コトバンクはYahoo!辞書と技術提携しています。

実関数論 じつかんすうろん theory of real functions

3件 の用語解説(実関数論の意味・用語解説を検索)

世界大百科事典 第2版の解説

じつかんすうろん【実関数論 theory of real functions】

微積分学およびそこから発展して実変数の関数について論ずる解析学の主要な分野の一つである。17世紀後半にI.ニュートン,G.W.F.ライプニッツによって発見された微分積分法は,19世紀前半に至ってA.L.コーシーによって一応の体系が整えられた。すなわち,彼は極限の概念を定式化することにより解析学の基礎を築いた。コーシーの2著書(1821,23)では,当時までの不完全な理論と比べれば著しい厳密さで微積分学を展開している。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

ブリタニカ国際大百科事典 小項目事典の解説

実関数論
じつかんすうろん

実変数関数論」のページをご覧ください。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

実関数論
じつかんすうろん

実変数の実数値関数を研究する分野であるが、19世紀の中期以降の、解析学の基礎についての反省から、実数論、点集合論ルベーグ積分論などが出現したのちの近代的な実変数の関数の研究をいう。その研究の対象は、ルベーグ積分やそれを用いての微分や長さ、面積の理論、フーリエ解析などで、具体的な関数空間の研究などもそのなかに含まれる。
 微分積分学の基本定理は、ルベーグ積分を用いると次のように完全になる。
 関数f(x)が区間[a, b]上で(ルベーグ)積分可能ならば、不定積分

は、ほとんど至るところのxで微分可能となり、
  F′(x)=f(x)
なお、普通は、関数f(x)は至るところ連続を仮定するが、連続でなくても

は存在することがある。
 連続関数の列{fn(x)}が、xを決めるごとにf(x)に収束する(fn(x)→f(x))とき、f(x)はかならずしも連続にならないが、それほどひどい不連続関数でもないであろう。そこで、連続関数の列の各点xでの極限として得られる関数を、たかだか第1階級の関数、第1階級の関数列の各点xでの極限として得られる関数を第2階級の関数などという。たとえば

は第2階級の関数である。
 この操作をどんどん続けていって得られる関数を総称してベール関数という。このような関数の研究は数学基礎論とも密接に関係している。[洲之内治男]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

実関数論の関連キーワード関数論実変数関数論重積分ベルヌーイ積分学微積分微積分学微分学実変数微積分法

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone