コトバンクはYahoo!辞書と技術提携しています。

対数 たいすう logarithm

翻訳|logarithm

6件 の用語解説(対数の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

対数
たいすう
logarithm

a が1とは異なる正の数であって,xy の間に,xay なる関係があるとき,指数 y を,a を底とする x の対数といい,y= log ax と書き表わす。ここで,x は対数 y の真数と呼ばれる。対数 y は,真数 x を求めるために底 a を累乗すべき指数を意味する。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

たい‐すう【対数】

xaya≠1, a>0, x>0)という関係があるとき、yaを底(てい)とするxの対数といい、y=logaxと表す。xを対数yの真数という。ロガリズムlogarithm)。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

対数【たいすう】

aを1でない正数とするとき,正数xに対しx=a(y/)となる実数yがただ一つ存在する。yを,aを底とするxの対数といい,y=log(/a)xと書く。xをyの真数という。
→関連項目計算尺指数ログ

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

たいすう【対数 logarithm】

aを1でない正の数,xを任意の正の数とすると,auxとなる実数uが定まる。このuを〈aを底(てい)とするxの対数〉といい,u=logaxと書く。またこのとき,xuの真数という。aを定めて,xの値に対するlogaxの値を与える数値表を対数表という。対数の基本的な性質としては, loga1=0,logaa=1  ……(1)  logaxy=logax+logay  ……(2)  loga(x/y)=logax-logay  ……(3)  logaxpplogax (pは任意の実数)  ……(4)  対数表によってx,yの対数logax,logayを求め,和logax+logay=logaxyを計算して,対数表を逆に引くことによりlogaxyの真数xyを求めることができるから,真数の乗法が対数表によって対数の加法で置き換えられる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

たいすう【対数】

冪法べきほう(累乗)の逆算法の一(他の一つは開方)。 a を 1 以外の正数とするとき、x a y の関係があるならば、 y a を底とする x の対数といい y =logax と書く。日常計算には底として 10 をとるが、これを常用対数という。また、理論的な問題にはある特別な定数 e =2.71828… を底とした自然対数が用いられる。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

対数
たいすう

aを定数とするとき、数xに対し、
  x=ay……(1)
を満たす数yを、(aを底(てい)とする)xの対数といい、
  y=logax……(2)
と書く(logは、対数を意味する英語logarithmを略した記号)。すなわち、(1)と(2)は同値である。このとき、xyの真数という。たとえば、8=23,0.01=10-2であるから、それぞれ3=log28,-2=log100.01である。y=logaxは指数関数y=axの逆関数であり、aを1でない正の数とすれば、どんな正の数xに対しても、aを底とする対数yが一つだけ定まる。以下、底についてはa>0,a≠1、真数については正とする。1=a0,a=a1であるから、つねにloga1=0,logaa=1が成り立つ。また、α=logaA,β=logaBとすればA=aα,B=aβで、指数法則によりAB=aαaβ=aα+βすなわちlogaAB=α+β、したがって
  logaAB
   =logaA+logaB……(3)
が成り立つ。同様にして
  loga(A/B)
   =logaA-logaB……(4)
pを任意の実数としてlogaAp=plogaAで、とくに、nを自然数として

が導かれる。これらの公式から、二つの正の数ABの積、商がそれぞれの対数の和、差を利用して求められる。また、正の数An乗、n乗根がそれぞれlogaAn倍、n分の1を利用して求められる。なお、異なる底をもつ対数の間には次の関係がある。
  logaA=logbA/logba……(6)
このような計算を対数計算という。
 10を底とする対数を常用対数という。常用対数については次のような計算ができる。
  log102000
      =log10(2×103)
      =3+log102
  log100.002
      =log10(2×10-3)
      =-3+log102
同じようにして、log102の値から、nを整数として2×10nの形の数の対数の値を求めることができる。一般に1≦x<10の範囲にあるxについて、log10xの値が与えられればx×10nの形の数の対数の値を求めることができる。この範囲にある数の常用対数の値の表が対数表である。たとえば対数表からlog103.14=0.4969が得られる。よって
  log103140=3+log103.14
       =3.4969
  log100.0314=-2+log103.14
       =.4969
これらの最後の形をみればわかるように、対数表から対数の値を求めるときは、3、のような整数部分と、4969のような小数部分に分けて扱うと都合がよい。前者を指標、後者を仮数とよぶ。指標は-nと同じ意味である。
 対数を用いる計算例として

の値を求めてみよう。

よって x=0.9528
前述の最後でlog10xの値からxを求めるのに対数表を逆に用いてもよいが、このために、対数の値に真数の値を対応させた逆対数表、すなわちy=10x(0≦x<1)の値の表もつくられている。
 長い間、対数計算は数値計算の労力を減らすのに役だってきたが、近年、コンピュータの発達によって、利用されることが少なくなった。数直線で、座標log10xの点にxと目盛ったものを対数目盛りとよぶ。この目盛りを用いた方眼紙を対数方眼紙といい、実験式を求めたりするのに利用される。常用対数のほかに、eを底とする対数も広く用いられている。[植竹恒男]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

対数の関連キーワード絶対値既約分数指数関数指数法則対数関数ベッセル関数仮設正負ピタゴラスの数正の数

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

対数の関連情報