コトバンクはYahoo!辞書と技術提携しています。

記号論理学 きごうろんりがくsymbolic logic

翻訳|symbolic logic

ブリタニカ国際大百科事典 小項目事典の解説

記号論理学
きごうろんりがく
symbolic logic

数学的論理学,ブールシュレーダーの論理学ともいう。その他,数理論理学,理論的論理学,論理代数などともいわれる。この論理学では,命題の構文論的カテゴリーとその構造上の関係のみを取上げ,論理学を純粋に形式化し,ある規則を定めて,これによって論理的な計算を行う。そのために,概念,命題,推論などが記号化され,すべての法則が,定められた推論規則によっていくつかの公理から導き出される。こうして組織された論理学が記号論理学である。現代記号論理学の始祖は G.フレーゲであるが,その思想は G.ペアノによって採用され,記号も簡素化された。さらに A.ホワイトヘッドと B.ラッセルが『数学原理』 Principia Mathematicaを著わし,C. I.ルイス様相論理学を,E.ポスト多値論理学を,H.カリーが結合論理学を発表した。公理論的な基礎研究は D.ヒルベルトによって決定的に推し進められ,今日にいたっている。

出典|ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について | 情報

デジタル大辞泉の解説

きごう‐ろんりがく〔キガウ‐〕【記号論理学】

命題概念推論などを、その要素と関係に還元して記号で表記し、論理的展開を数学的演算の形で明らかにする論理学の一分野。哲学・数学などに応用される。数学的論理学。数理論理学。→論理学

出典|小学館デジタル大辞泉について | 情報 凡例

百科事典マイペディアの解説

記号論理学【きごうろんりがく】

英語ではsymbolic logic。〈数理論理学〉〈数学的論理学〉とも。現代論理学の別称と言ってよいが,推論を記号試算によって行うという発想はライムンドゥス・ルルスルルスの術),ライプニッツ(マテシス・ウニウェルサリス)以来あり,ブールやド・モルガンを経てフレーゲに至り(《概念記法》1879年),ホワイトヘッド=ラッセルの《プリンキピア・マテマティカ》(1910年―1913年)によって完成された。
→関連項目数理論理学タルスキーブールペアノ命題論理

出典|株式会社日立ソリューションズ・クリエイト百科事典マイペディアについて | 情報

世界大百科事典 第2版の解説

きごうろんりがく【記号論理学 symbolic logic】

今日では,ほとんど現代論理学の別称となっている用語。伝統的なアリストテレス流の古典論理学と比べ,人工的な記号を多用するために,そう呼ばれた。19世紀後半に輩出した現代論理学の創始者たちは,特に数学を手本にして論理学を編制しようとしたため,数理論理学とか数学的論理学と呼ばれることもある。しかし言葉の由来はどうあれ,多量にしかも自覚的に行われた記号の採用と,論理的思考と数学的思考の同一性の認識とが,現代論理学を支える基本的発想となっている。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

大辞林 第三版の解説

きごうろんりがく【記号論理学】

推論の構造および過程を数学的演算になぞらえて形式化・記号化して取り扱う論理学。一九世紀後半ブールらの論理代数に始まり、フレーゲ・ラッセルらにより厳密に体系化され発展した。アリストテレス以来の伝統的論理学を明晰めいせき化するのみならず、数学あるいは他の科学・哲学の基盤を形づくる。数学的論理学。数理論理学。論理代数。 ↔ 伝統的論理学

出典|三省堂大辞林 第三版について | 情報

日本大百科全書(ニッポニカ)の解説

記号論理学
きごうろんりがく
symbolic logic

数理論理学ともいう。命題や論理概念を記号で表し、推論を式の変形という形式的な法則に還元して論理学を組織する一分科である。19世紀後半にG・ブールらの論理代数が現れ、フレーゲによって現代の記号論理学の基礎が築かれた。B・A・W・ラッセルはこれを大きく発展させ、『プリンキピア・マテマティカ』Principia Mathematica(1910)に集大成し、記号論理学の方法を確立した。[西村敏男]

記号論理学における記号

「雪は白い」「3<aかつa<8」、あるいは「nを任意の自然数とするとき、n<mとなるような自然数mが存在する」のように、ある一つの主張をしているものが命題である。3、a、8などは命題が扱う対象で、「雪である」「白い」「<」「自然数である」などは、対象のもつ性質を表し、述語とか命題関数といわれる。「かつ」「任意の」「存在する」は命題を合成する論理概念である。記号論理学ではこれらのものをすべて記号で表す。対象には定数と変数があり、それぞれ1、2など、あるいはx、yなどの記号を用いる。これらの記号を総称して項とよぶことにする。命題を合成する論理概念を表す記号(論理記号という)としては、いろいろの流儀のものがあるが、ここでは~(否定)、「∧」(論理積)、「∨」(論理和)、(含意)、「∀」(全称記号)、「∃」(存在記号)を用いる。~A、A∧B、A∨B、A⇒Bをそれぞれ「Aでない」「AかつB」「AあるいはB」「AならばB」と読む。また∀xF、∃xFはそれぞれ「すべてのxについてFが成り立つ」「Fが成り立つようなxが存在する」と読む。∀と∃を総称して限定記号とか束縛記号ともいう。さらに、論理記号を含まない原始命題や述語を表す記号を用いる。述語にはN(x)のように項を一つしか含まないものや、x<yの「<」のように、二つの項を含むものなどがある。一般に、n個の項を、含む述語をn項述語という。原始命題はゼロ項述語とも考えられる。命題を記号で表したものを論理式といい、次のように定義する。(1)原始命題記号は論理式である。R( ,…, )がn項述語で、t1,…, tnが項であれば、R(t1,…, tn)は論理式である。これらを素論理式という。(2)AとBが論理式であれば、~A、A∨B、A∧B、A⇒Bもまた論理式である。(3)Fが論理式であり、このなかには、変数xを伴った∀x、∃xは含まれていないとする。このとき、∀xF、∃xFは論理式である。このように、∀や∃を伴って現れる変数を束縛変数、そうでない変数を自由変数という。[西村敏男]

記号論理学における記号の意味

数学の証明などで通常使われる論理を二値論理といい、命題(論理式)は「真」(1で表す)か「偽」(0で表す)のいずれか一方の値をとるものと考える。命題の「真」「偽」の値をその真理値という。[西村敏男]

命題論理と述語論理

記号論理のうちで、論理記号~、<、>、⇒だけに着目して研究する範囲を命題論理とよび、限定記号∀と∃をも含めた一般の場合を述語論理という。命題論理では次の諸式が成り立つ。「=」は、式のなかのA、B、Cに1と0のいかなる値を入れても、つねに左辺と右辺が等しい値をもつという意味である。
(1)A∨~A=1(排中律), A∨0=A
(2)A∨A=A(吸収律)
(3)A∨B=B∨A(交換律)
(4)(A∨B)∨C=A∨(B∨C)(結合律)
(5)A∧(B∨C)=(A∧B)∨(A∧C)(分配律)
(6)~(A∨B)=~A∧~B(ド・モルガンの法則)
(1)′A∧~A=0(矛盾律), A∧1=A
(2)′A∧A=A
(3)′A∧B=B∧A
(4)′(A∧B)∧C=A∧(B∧C)
(5)′A∨(B∧C)=(A∨B)∧(A∨C)
(6)′~(A∧B)=~A∨~B
 (1)′~(6)′は、(1)~(6)の∧、∨、1、0をそれぞれ∨、∧、0、1に一斉に置き換えたものである。これを双対(そうつい)の原理という。∧、∨、~をそれぞれブール代数の「積」「和」「補元」の演算とし、1、0をそれぞれ最大元、最小元にとれば、命題論理の論理式の全体がブール代数をなすことがわかる。また、これらの式を用いて論理式を変形すれば、論理式は、~と∧、あるいは~と∨、あるいは~と⇒のみを含むものに変形できる。また、A|B(シェーファーの棒という)を~(A∧B)のこととすると、A|Bだけで他の論理記号がすべて定義できる。A∨~Aは、Aが1でも0でも値1をもつ。論理式は、そこに含まれる素論理式に任意に値1、0を与えるとつねに値1をもつとき、その論理式は「恒等的に真」な論理式、あるいは同語反復(トートロジー)という。命題論理では、論理式が恒等的に真であるかどうかを確かめる方法がある。述語論理の論理式∀xFと∃xFの間には、
  ~∀xF=∃x~F, ~∃xF=∀x~F
という関係がある。したがって、~と∀を用いれば∃を、~と∃を用いれば∀を定義することができる。述語論理の論理式∀x(F∨~F)は恒等的に真であるが、述語論理の任意の論理式に対して、それが恒等的に真であるかどうかを確かめるような一般的な方法はない。[西村敏男]

記号論理の公理的展開

記号論理を公理的に展開することもできる。公理と推論の選び方にはいろいろのものがあるが、その一つとしてまず、次の公理を与える。
(1)(A⇒B)⇒((B⇒C)⇒(A⇒C))
(2)(~A⇒A)⇒A
(3)A⇒(~A⇒B)
ここでA、B、Cは任意の論理式である。
(4)xがAのなかに含まれない変数のとき、
  ∀x(A⇒B)(A⇒∀xB)
(5)∀xA⇒A′
ここでA′は、Aに現れる変数xをすべて、Aのなかに束縛変数として含まれていない変数、あるいは定数yで置き換えて得られる論理式である。
 推論規則として、次の二つを与える。
(1)AとA|BからBを得る(三段論法)。
(2)xを変数とするとき、Aから∀xAを得る。公理(1)、(2)、(3)と推論規則(1)だけからなるものが命題論理で、全体からなるものが述語論理である。論理式Aが証明されるというのは、公理から推論規則を次々と適用してAが得られることである。述語論理の体系では、証明される論理式はすべて恒等的に真であり、Aと~Aがともに証明されるような論理式Aは存在しない。これを無矛盾という。また、恒等的に真な論理式はかならず証明できる。これを完全性という。述語論理の体系は無矛盾でかつ完全である。したがって、命題論理でも述語論理でも、論理式が恒等的に真であることと、その論理式が証明できることは同じ意味である。任意の論理式Aが証明できるかどうかを確かめる一般的方法を与えることを決定問題という。命題論理では決定問題は肯定的に解けるが、述語論理では否定的に解ける。
 いままで述べてきたのは、命題は「真」か「偽」かの値をとり、排中律(真と偽以外の値はない)の成り立つものである。これを古典論理ともいう。古典論理の対象領域を、「集合」「集合の集合」……にまで広げた記号論理もある。これを高階の述語論理という。また、排中律を認めない「直観主義の数学」に用いられる論法を記号化した直観主義論理の研究もある。また、真偽のほかに、第三の値を真理値としてもつ三値論理、より多くの真理値をもつ多値論理の研究もある。さらに、可能性、必然性を表す様相命題を記号論理のなかで表現するための論理演算をもつ様相論理なども研究されている。[西村敏男]
『前原昭二著『記号論理入門』(1967・日本評論社) ▽松本和夫著『数理論理学』(1971・共立出版)』

出典|小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について | 情報 凡例

世界大百科事典内の記号論理学の言及

【論理学】より

…もちろんそこでは,人間の知識がこの人工言語で完全に表現されるにちがいない,ということが前提されているのである。記号論理学【坂井 秀寿】
【論理学の歴史】

[ヨーロッパ]
 ヨーロッパ論理学の歴史は古代,中世,近世,近・現代に4分される。(1)古代――古代論理学は前4世紀にアリストテレスが著した《オルガノン》で始まる。…

※「記号論理学」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

今日のキーワード

金城湯池

1 《「漢書」蒯通伝から。「湯池」は熱湯をたたえた堀》守りが非常に固く、攻めるのが難しい城。金湯。2 堅固で、他から侵害されにくい勢力範囲。「保守派の金城湯池」...

続きを読む

コトバンク for iPhone