ユークリッド幾何学(読み)ゆーくりっどきかがく(英語表記)Euclid geometry

日本大百科全書(ニッポニカ) 「ユークリッド幾何学」の意味・わかりやすい解説

ユークリッド幾何学
ゆーくりっどきかがく
Euclid geometry

ユークリッドがその著『原論』(『ストイケイアStoikheia)で展開した幾何学。『原論』はその時代までのギリシア数学を集大成した13巻の書で、平面幾何(第1巻~第6巻)、整数論実数論(第7巻~第10巻)、立体幾何(第11巻~第13巻)からなる。整数、実数に関する部分も幾何学の用語を使っているうえに、『原論』の大部分が幾何学なので『幾何学原論』ともよばれる。『原論』で扱われている幾何学は現在n次元まで拡張されているが、19世紀以後続々と出現した他の幾何学と区別して、これをユークリッド幾何学といい、『原論』におけるように論証主体とする方法によって行う二、三次元のユークリッド幾何学をとくに初等幾何学とよぶ。『原論』は23個の定義、5個の公準、5個の公理から始まる。定義によって用語の説明をしたのち、次の5個の公準(今日のことばでは幾何学の公理)をあげている。

(1)2点を線分で結ぶことができる。

(2)線分は直線にいくらでも延長できる。

(3)任意の点を中心とした任意の半径の円を描くことができる。

(4)直角はすべて互いに相等しい。

(4)二つの直線ll′が他の直線l″と交わってできる交角α、βがα+β<180゜を満たすならば、ll′とは交角α、βのある側に延長するとかならず交わる。

 5個の公理は「全体は部分より大きい」「同じものに等しいものはまた互いに等しい」のように数学一般について成り立つ命題を述べている。ユークリッドは、幾何学のそれまで知られている数多くの定理を、どの定理もそれ以前の定理と論証だけから証明するという論証体系にまとめ上げ、この体系の大前提として先に述べた5個の公準を採用した。土地測量術や天体観測術への応用から出発した幾何学はこの『原論』によって初めて壮大な論理的体系をもつ学問に発展することとなった。

 第五公準は他の5個の公準ほど簡明でなく、また不自然な感じがあるために、他の公準から証明できるのではないかという疑いがもたれた。この公準は、その後「1直線外の1点を通ってちょうど1本の平行線が存在する」(平行線公理)と同値であることがわかったが、他の公準から証明されるに違いない(と信じられる)命題を公準として残しておくことは、完璧(かんぺき)な論証体系としての幾何学にとって大きな汚点と考えられた。そのため平行線公理の証明に多くの優れた学者が立ち向かったが、時間と労力を飲み尽くす泥沼であった。『原論』から2000年もたった1830年前後になって、ロシアのロバチェフスキーハンガリーのボヤイは独立に、第五公準を「1直線外の1点を通って2本の平行線が存在する」という別の公準で置き換えても矛盾のない幾何学が建設されることを示した。これがのちに双曲幾何学とよばれる非ユークリッド幾何学である。この発見はユークリッド幾何学の唯一性を否定し、幾何学の新時代の幕開きとなったものである。実際、リーマン、クラインなどの研究によって新しい、より一般的な幾何学が続々誕生していった。

 一方、16世紀におけるデカルト、フェルマーによる座標系の考案は、ユークリッド幾何学に計算を利用して研究する道を開いた。のちに解析幾何学とよばれるこの方法は、ユークリッド幾何学の内容をさらに豊かにし、かつ三次元から一般のn次元への拡張を可能にした。すなわち、n次元数空間の2点(x1,x2,……,xn),(y1,y2,……,yn)の間の距離を

と約束したとき、この空間をn次元ユークリッド空間といい、合同変換(長さを変えない1対1点対応)によって不変な図形の性質を研究する学問がn次元ユークリッド幾何学である。幾何学はユークリッド幾何学以外にもたくさんあるが、『原論』における論証の進め方は現在でも模範とすべきものであり、ユークリッド幾何学は他の諸幾何学の基礎である。また、抽象数学の多くはユークリッド幾何学で成り立つ図形の諸性質を抽象化することから出発している、という意味で、ユークリッド幾何学は現代数学の土壌ともいうことができる。実用面でも、宇宙規模の測量はともかく、地上の小範囲においては依然としてユークリッド幾何学が使われていることには変わりはない。

[立花俊一]

『ユークリッド著、中村幸四郎他訳『ユークリッド原論』(1972・共立出版)』


出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

ブリタニカ国際大百科事典 小項目事典 「ユークリッド幾何学」の意味・わかりやすい解説

ユークリッド幾何学
ユークリッドきかがく
Euclidean geometry

ユークリッドは『原本』で幾何学を展開するにあたり,5つの公理と5つの公準をおいて出発したが,これらの公理と公準に基づく幾何学をユークリッド幾何学という。 D.ヒルベルトはこの公理系の不備を補って,完全な公理系のうえにユークリッド幾何学を展開した。また,n次元運動群を n次元空間に作用させたものとして,n次元ユークリッド空間が考えられ,その上の幾何学として n次元ユークリッド幾何学が考えられる。ユークリッドのおいた5番目の公準「平面上で2直線が1直線と交わっているとき,もしその同じ側にある内角の和が2直角よりも小であったならば,これらの2直線は,これらをその側に延長すれば,必ず交わる」は,後世論議の的となったが,この公準を満たすものをユークリッド幾何学,満たさないものを非ユークリッド幾何学と呼んで区別する。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報