翻訳|vector
力を働かせて物を動かしてみると,同じ大きさの力でも,押すのと引くのではその効果はまったく違う。力は大きさだけでなく向きももつ。速度,加速度なども大きさと向きをもっている。このように大きさと向きをもった量のことをベクトルという。ベクトルは空間の向きをもった線分で表すことができる。線分の長さが大きさを表し,線分の向きがベクトルの向きを表す。線分の端点をP,Qとし,向きがPからQへ向かっているときQと記す。このとき,Pを始点,Qを終点という。力のベクトルの場合は始点を作用点とも呼ぶ。
数学では,始点を固定して考えると不便な場合が多く,P,Q,P′,Q′が同じ平面の上にあり,線分 と は平行で,かつ を平行移動してPとP′を一致させ,QとQ′が一致するとき,Qと′とは同じベクトルを表すと考えるほうがつごうがよい。すなわち,Qと′の向き,方向,大きさが同じときは同じものと考えるのである(図1)。Qで表されるベクトルaの大きさは線分 の長さと定め,これを|a|で示し,aの長さ,大きさ,絶対値などと呼ぶ。空間のかってな点Pを取ると,各ベクトルaについて点Qが存在して,aはQで表される。このときa=[Q]と書くことにする。a=[Q]と実数αとの積を,直線PQ上のPからみて,α≧0ならばQ側,α<0ならQと反対側の点Q′で,線分 の長さが|α|となるものを取り,′が表すベクトルと定める。これをaのα倍といい,αaで表す。aの実数倍の形のベクトルをaのスカラー倍という。二つのベクトルa,bが与えられ,aをQ,bをRで表したとき,Rが定めるベクトルをaとbの和といい,a+bで表す。このa+bはPの取り方によらない。この和の定め方を平行四辺形の法則という(図2)。a+b=b+a,(a+b)+c=a+(b+c),実数α,βについて,α(a+b)=αa+αb,(α+β)a=αa+βaなどが成り立つ。′で表されるベクトルを零ベクトル(ゼロベクトル)という。零ベクトルを0で表せば,a+0=a,0a=0が成り立つ。
最初に述べた力のベクトルのように,始点が違うものは違うと考えるベクトルを束縛ベクトルといい,上記の平行移動で移りうるものは同じと考えるベクトルを自由ベクトルという。始点が同じ束縛ベクトルの和も平行四辺形の法則を使って定める。力のベクトルの場合,この和は力の合成にほかならない。
空間の直交座標系x,y,zを与えたとき,x軸上の正方向のPで の長さが1のものが表すベクトルiをx軸上の単位ベクトルという。同様に,y軸上,z軸上の単位ベクトルj,kが定まる。これらを座標単位ベクトルという。各ベクトルaはa=α1i+α2j+α3kと書けるが,この(α1,α2,α3)をaの座標成分という。aの長さはであり,αaの座標成分は(αα1,αα2,αα3)である。bの座標成分が(β1,β2,β3)ならば,a+bの座標成分は(α1+β1,α2+β2,α3+β3)である。
ベクトルについて,P,Q,Rが同一直線上にあれば,aとbは共線であるという。これは,ともには0でない実数α,βが存在して,αa+βb=0となることと同じである。が共平面であるとは,P,Q,R,Sが同一平面上にあることである。共線のときと同様に,全部は0でない実数α,β,γがあって,αa+βb+γc=0となることと同値である。共平面でないベクトルa,b,cは一次独立であるという。a,b,cが一次独立であることと,[αa+βb+γc=0⇒α=β=γ=0]は同値である。例えば,座標単位ベクトルi,j,kは一次独立である。一次独立なベクトルa,b,cが与えられれば,かってなベクトルはαa+βb+γcと書ける。
ベクトルの内積を|a||b|cos(∠QPR)と定め,(a,b)またはa・bで表す。(a,b)=(b,a),(a+b,c)=(a,c)+(b,c),実数αについて,(αa,b)=α(a,b)が成立する。(a,b)=0となるとき,aとbは互いに直交するという。a,bの座標成分がそれぞれ(α1,α2,α3),(β1,β2,β3)ならば,(a,b)=α1β1+α2β2+α3β3である。
二つのベクトルが定める平行四辺形の面積は,|a||b|sin(∠QPR)である。P,Q,Rが定める平面に垂直で,長さがこの面積であるベクトルをaとbのベクトル積といい,a×bで表す(図3)。ただし,a×bの向きは,aからbへ180度以内の角度でまわるとき,右ねじの進む方向と決める。a×b=-(b×a),(αa)×b=α(a×b),a×(b+c)=a×b+a×cが成り立つ。右手系の座標x,y,zを取り,座標単位ベクトルをi,j,kとすれば,a×b=(α2β3-α3β2)i+(α3β1-α1β3)j+(α1β2-α2β1)kとなる。ここで,(α1,α2,α3),(β1,β2,β3)はそれぞれa,bの座標成分である。
n次元ユークリッド空間の有向線分をベクトルと定めれば,空間のベクトルについて上に述べたことと同様のことがベクトル積を除いて考えられる。ベクトル積は三次元固有のものである。ベクトルの性質を抽象化して得られるものが線形空間であり,線形空間の性質を調べるのが線形代数学である。
→線形代数学
執筆者:丸山 正樹
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
…電子のように1/2のスピンをもつ状態,さらに一般に任意のスピンをもつ状態を表すために導入された量で,スピノルの名もスピンに由来している。三次元空間を回転させたとき,その中の量は回転に伴って変化するが,その変化のしかたによってスカラー,ベクトル,テンソルなどに区別される。変化しないものをスカラーといい,空間内の変位を表す矢印と同じようにふるまうのがベクトルであり,数個のベクトルの積と同じように変化するのが高階のテンソルである。…
… 物理学での力forceの定義は普通ニュートンの運動方程式を用いて次のようになされる。すなわち力というのは平行四辺形の合成則にしたがうベクトル量であって,物体の運動量p=mv(mは物体の(慣性)質量,vは速度)を変化させる働きをもつ。このとき,小さな時間⊿tの間にpに⊿pだけの変化を生ずるとすると,pの瞬間的変化率,と,働いている力Fの間に,という関係(ニュートンの運動方程式)がある。…
※「ベクトル」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」
一粒の種子をまけば万倍になって実るという意味から,種まき,貸付け,仕入れ,投資などを行えば利益が多いとされる日。正月は丑(うし),午(うま)の日,2月は寅(とら),酉(とり)の日というように月によって...
10/1 共同通信ニュース用語解説を追加
9/20 日本大百科全書(ニッポニカ)を更新
7/22 日本大百科全書(ニッポニカ)を更新
6/17 日本大百科全書(ニッポニカ)を更新
5/20 小学館の図鑑NEO[新版]昆虫を追加