コトバンクはYahoo!辞書と技術提携しています。

ブラウン運動 ブラウンうんどう Brownian motion

8件 の用語解説(ブラウン運動の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

ブラウン運動
ブラウンうんどう
Brownian motion

熱運動などによって引起される物体の不規則運動。 1827年 R.ブラウンが水の中に入れた花粉から出た微小粒子の不規則運動から発見したとされている。希薄な気体中につるされた小さな鏡の不規則振動,電気回路の中の電流や電位差ゆらぎなど,観測される物理量はすべて物質の微視的な自由度のもつ熱運動に由来する同種のゆらぎをもっている。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

ブラウン‐うんどう【ブラウン運動】

気体や液体中の微粒子の不規則な運動。周囲の熱運動をする分子の衝突が不均一なために起こる現象で、R=ブラウンが水中での花粉の運動から発見。のちアインシュタインランジュバンにより理論化された。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

ブラウン運動【ブラウンうんどう】

気体,液体中に浮遊する微小粒子が行う不規則なジグザグ運動。1827年R.ブラウンが水中の花粉を顕微鏡で観察中に発見。熱運動をしている流体の分子が絶えず粒子に衝突し,粒子が大きいうちは衝撃が平均化されるため動かないが,微小な粒子では分子の衝突が少ないため平均化されず不規則な運動を生じる。
→関連項目アインシュタイン暗視野顕微鏡煙霧質コロイドスベドベリ分子

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

法則の辞典の解説

ブラウン運動【Brownian motion】

流体中に浮遊している微細粒子の示す不規則性運動.英国の植物学者ブラウンが花粉を水中に分散させたものを顕微鏡で観察していて発見した.粒子に対する統計的な圧力の揺らぎに起因する.よく「水中に分散した花粉粒の連続的な不規則運動」と記してあるテキスト類が少なくないが,ブラウン(R. Brown)の最初に観察したものは,花粉が水中で放出する微粒子であった.この理論的な解明はアインシュタインの貢献である.アインシュタインのブラウン運動の式*を参照.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

栄養・生化学辞典の解説

ブラウン運動

 分子,原子,コロイド粒子などが液体中で動く状態.不規則な熱運動.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

ブラウンうんどう【ブラウン運動 Brownian movement】

花粉を水に浮かべておくと,破裂してたくさんの微粒子が出てくる。それを顕微鏡で見ると,ぴりぴり,ぶるぶると活発に動きまわっている。この運動を初めて観察したのはイギリスニーダムJohn Tuberville Needham(1713‐81)で,1740年のことといわれているが,当時はこの動く微粒子が動物の精子にあたるのだろうと考えられていた。その後,1826年になって,イギリスの植物学者R.ブラウンがこの動く微粒子の運動をもっとよく調べようとした動機も,植物の受精の研究だった。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

ブラウンうんどう【ブラウン運動】

気体または液体中に浮遊する微粒子が行う不規則な運動。まわりの熱運動をする気体または液体の分子が、微粒子に不規則に衝突する結果起こる。1827年ブラウンが、水中に浮遊する花粉粒を顕微鏡で観察している際に発見。のちに物理学者により研究され、アインシュタイン・ランジュバンにより理論化された。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

ブラウン運動
ぶらうんうんどう
Brownian motion

流体(気体あるいは液体)中にあるコロイド粒子(直径がミクロン程度の粒子)が行う不規則運動。1827年、花粉から出た粒子の水中における運動を顕微鏡で観測していたイギリスの植物学者R・ブラウンにより発見された。ブラウン運動は、最初、生命現象と関係があると考えられ注目されたが、その後しだいに分子の熱運動によることがわかってきた。
 コロイド粒子に働く力は分子とのランダムな衝突に起因する。流体を構成する分子は非常に小さく、その運動を直接、顕微鏡などで観測することは不可能である。ブラウン運動は、分子の熱運動そのものではないが、それを目に見える形に表したものといえる。ブラウン運動は分子の熱運動を証拠づける一つの現象である。
 ブラウン運動に関する力学の立場からの考察はアインシュタインによってなされた。粒子の質量をM、速度をvとする。このとき、粒子に働く力として個々の時間に衝突する撃力の平均的効果として、速度を減ずる方向に働く摩擦力を-kvとし、それ以外をランダム力f(t)とする。これにより、粒子の運動方程式は

となる。このようにランダム力を含む運動方程式をランジュバン方程式という。ランダム力f(t)の性質として、ホワイト・ガウスノイズ(正規性白色雑音)とよばれるものが通常用いられる。これは
f(t)〉=0,〈f(t)f(t´)〉=2Dδ(tt´)
を満たす。ここで<…>はさまざまなランダム過程に関する平均を表す。またここではランダム力間に時間的な相関がないとみなしている。この運動の定常状態では、速度の分布が

である。それが温度Tの熱平衡状態でのカノニカル分布

と一致するとすると
DkBTk
の関係が導かれる。また、粒子の拡散係数はDdiffD/k2で与えられる。これらの関係はアインシュタインの関係式とよばれる。この関係は、拡散係数と摩擦係数が独立ではないことを意味しており、揺動散逸定理とよばれるものの草分けとなっている。この式を利用すると、ブラウン運動の解析からボルツマン定数を実験的に測定することができる。[宮下精二]

数学

ブラウン運動において、微粒子の時刻tにおける位置座標X(t)はtを含む確率変数と考えられる。数学的にはブラウン運動は次の確率過程として定式化される。すなわち確率空間Ωで定義された確率過程X(t,ω)で次の条件(1)、(2)、(3)を満たすものをウィーナー過程Wiener processという。以下X(t,ω)をX(t)と表す。
(1)X(t)∈Rd (=d次元ユークリッド空間)
(2)t1t2<……<tnである任意のti(i=1,2,…,n)に対してX(t2)-X(t1),X(t3)-X(t2),……,X(tn)-X(tn-1)は確率変数として独立である。
(3)X(t)の第i成分をXi(t)とするときXi(t)(1≦id)は独立であって、任意のtsに対してXi(t)-Xi(s)の確率分布は、正規分布N(0,|ts|)である。
 このウィーナー過程をd次元ブラウン運動とよぶこともある。d次元ブラウン運動の道は確率1で連続であるが、有界区間でも有界変動ではなく長さをもたない。[古屋 茂]
『飛田武幸著『ブラウン運動』(1975・岩波書店) ▽米沢富美子著『ブラウン運動』(1986・共立出版) ▽I・カラザス、S・E・シュレーブ著、渡邉寿夫訳『ブラウン運動と確率積分』(2001・シュプリンガー・フェアラーク東京)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内のブラウン運動の言及

【ウィーナー過程】より

…初め,イギリスの植物学者R.ブラウンが顕微鏡で水中にある花粉から出る微粒子を観測しているうちに,それらが激しい不規則運動をしていることを発見した。この運動は,後に水の分子が微粒子と無数といってよいほど頻繁に衝突することによって起こるものであることがわかり,ブラウン運動Brownian movementと呼ばれるようになった。A.アインシュタインは,1905年にこの運動の数学的記述を与え,一定時間内の変移はガウス分布に従うことを理論的に示した。…

【アインシュタイン】より

…そこに7年間勤めたが,しごとの合間に行った理論物理学の研究は,20世紀物理学の基礎を築くことになった。すでに1901年から熱力学および統計力学に関する論文を発表していたが,05年に光量子仮説,ブラウン運動の理論,特殊相対性理論という,根本的かつ革命的理論を立続けに提出したのである。そのため,この年は〈奇跡の年〉といわれる。…

【アインシュタインの関係式】より

…原子力エネルギーは原子核の質量の1000分の1程度をエネルギーに変えて利用する。相対性理論【藤井 保憲】(2)ブラウン運動の理論において導いた関係式。例えば流体中のコロイド粒子などは不規則なブラウン運動を行い,しだいに位置を変えていく。…

【ウィーナー過程】より

…初め,イギリスの植物学者R.ブラウンが顕微鏡で水中にある花粉から出る微粒子を観測しているうちに,それらが激しい不規則運動をしていることを発見した。この運動は,後に水の分子が微粒子と無数といってよいほど頻繁に衝突することによって起こるものであることがわかり,ブラウン運動Brownian movementと呼ばれるようになった。A.アインシュタインは,1905年にこの運動の数学的記述を与え,一定時間内の変移はガウス分布に従うことを理論的に示した。…

【拡散】より

…この消え残った力は絶えずゆらいでいる。これによりコロイド粒子のブラウン運動が見られるのであるが,この運動は決定論によっては決められず,確率法則に支配されている。ここで,ある位置から出発したコロイド粒子が,時間が経つにつれ,空間の中でどんな確率分布をとっていくかを記述するのがスモルコフスキー方程式である。…

【拡散過程】より

…これを放置しておくと粒子は不規則に動きながらも,傾向としては濃度の高いほうから低いほうへ向かって広がり,ついには水全体に一様に分布するに至る。ブラウン運動はこのような現象をモデルとする拡散過程のもっとも重要な例である。一般に,ある区間の中で行動している一次元拡散過程が時間的に一様,すなわち推移確率が時間の差だけに依存するとき,その区間から外に出るまでの行動は,ブラウン運動から状態空間であるその区間の位相的変換と時間変更および粒子を消滅させる方法とで構成される。…

【確率過程】より

…その確率法則は,平均値m(t)=EXt(ω)}と共分散関数ρ(t,s)=E{(Xt(ω)-m(t))(Xs(ω)-m(s))}とで決まる。m(t)=0,ρ(t,s)=min{t,s}(=tsの小さいほう)であるガウス過程{Xt(ω)(t≧0)}で見本関数が連続であるものをウィーナー過程,またはブラウン運動という。これはR.ブラウンが観察した花粉の微粒子の不規則運動や,A.アインシュタインが研究した分子運動の模型を,N.ウィーナーが数学的に厳密にしたもので,ウィーナーやP.レビの詳しい研究がある。…

【ブラウン】より

…ムラサキツユクサの細胞で複雑なタイプの原形質流動を観察し,原形質流動への関心を高めた。ブラウン運動も彼の発見になる。【佐藤 七郎】。…

※「ブラウン運動」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

ブラウン運動の関連キーワード予め角乗り樟脳玉簀引き舟桶浮人形思い浮べる杯流し胸に浮かぶブタクサ花粉症

今日のキーワード

信長協奏曲(コンツェルト)

石井あゆみによる漫画作品。戦国時代にタイムスリップした現代の高校生が病弱な織田信長の身代わりとして生きていく姿を描く。『ゲッサン』2009年第1号から連載開始。小学館ゲッサン少年サンデーコミックス既刊...

続きを読む

コトバンク for iPhone

ブラウン運動の関連情報