コトバンクはYahoo!辞書と技術提携しています。

ローレンツ変換 ローレンツへんかん Lorentz transformation

7件 の用語解説(ローレンツ変換の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

ローレンツ変換
ローレンツへんかん
Lorentz transformation

A.アインシュタイン特殊相対性理論における2つの慣性系間の座標変換。力が働かない物体が等速度運動するようにみえる座標系を慣性系と呼ぶ。1つの慣性系 Sに対して等速度運動している座標系 S′も慣性系である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

ローレンツ‐へんかん〔‐ヘンクワン〕【ローレンツ変換】

光速度に近い速さで動く物体の運動を二つの慣性系から記述するときの、二つの慣性系間の座標変換。相対運動の速さが光速度よりもきわめて小さければ、ガリレイ変換に一致する。1904年ローレンツ見出し特殊相対性理論においても確認された。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

ローレンツ変換【ローレンツへんかん】

特殊相対性理論において用いられる慣性系の間の座標変換。座標系(x,y,z,t)に対して座標系(x′,y′,z′,t′)の軸がたがいに平行であるようにとり,x軸方向に速度vで運動しているとき,ローレンツ変換は(式1)の形になる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

法則の辞典の解説

ローレンツ変換【Lorentz's transformation】

互いに等速運動を行う二つの慣性系の間の座標と時間の特殊相対論的変換.ある出来事が一方の系で xyzt で起こり,他方の系では x′,y′,z′,t′ であったとすれば

x2y2z2t2x2y2z2t2

を満たす変換をローレンツ変換という.ただし両座標系の原点が一致したときに tt′=0とおく.変換は4行4列の行列の形で表せる.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

ローレンツへんかん【ローレンツ変換 Lorentz transformation】

特殊相対性理論において用いられる慣性座標系(慣性系)の間の座標変換。ニュートン力学では,慣性系の間の変換はガリレイ変換で与えられるが,特殊相対性理論ではローレンツ変換がこれに代わる。一つの慣性系S(x,y,z,t)から,x軸方向に速度vで動くもう一つの慣性系S′(x′,y′,z′,t′)への座標変換は,光速度をcとして,で与えられる。これをローレンツ変換といい,注目すべきは,時間もtからt′へ変換され,とくに時間と空間座標の間に移り変りが起こることである。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

ローレンツへんかん【ローレンツ変換】

特殊相対性理論において、互いに等速度で運動する慣性系を結びつける時空座標の変換。空間座標と時間座標が混じり合って変換されるが、光速度は不変に保つ。特殊相対性理論はこの変換によって、基本法則の形が変わらないように構成される。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

ローレンツ変換
ろーれんつへんかん

相対性理論における時間・空間の座標変換。ニュートン力学の法則は、互いに等速運動している座標系を用いても同じ形で与えられる。これはガリレイの相対性原理として知られていたが、1864年に定式化されたマクスウェル電磁気学、および、その応用としての光の電磁波論の法則は、ガリレイの相対性原理を満足していなかった。このことから、光の波の振動媒質としてのエーテルの静止系が存在するかもしれないと一時期考えられていたが、1905年、アインシュタインが、ガリレイの相対論とは別の相対論が成立することを発見し、電磁気学を含むすべての法則についても、等速運動座標系間において相対性原理が成立していることが確認された。このアインシュタインの相対論における新しい時間・空間の座標の変換式がローレンツ変換である。この変換式は、1892年、H・A・ローレンツにより、電磁気学の法則を不変とする座標変換としてみいだされたものであるが、その同じ変換式を、アインシュタインは、光速度一定の原理と相対性原理を基礎に再発見した。これにより、ローレンツ変換は電磁気学に特有のものでなく、すべての法則の基礎である時間・空間に固有の性質であることが認識された。さらに1908年、ミンコフスキーは、この変換を時間・空間を含む四次元空間における回転に関する対称性として認識した。この対称性はすべての物質の存在形態を決定してもいるのである。[佐藤文隆]
『アルバート・アインシュタイン著、金子務訳『特殊および一般相対性理論について』(1991・白揚社) ▽馬場駿羣著『ローレンツ変換の新解釈――時計の遅れや双子のパラドックスの問題も解消しうる』(1991・科学同人研究会) ▽砂川重信著『相対性理論の考え方』(1993・岩波書店) ▽松田卓也・二間瀬敏史著『なっとくする相対性理論』(1996・講談社) ▽菅野礼司著『微分形式による特殊相対論』(1996・丸善) ▽小玉英雄著『相対性理論』(1997・培風館) ▽戸田盛和著『相対性理論30講』(1997・朝倉書店)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内のローレンツ変換の言及

【相対性理論】より

… 正しい座標変換としてアインシュタインが(1)式に代わるものとして提出したのは,である。この変換式はローレンツ変換と呼ばれ,ローレンツがローレンツ収縮を導いた際に用いたものと同じ形であるが,その前提はまったく異なる(この式の導き方についてはコラム〈ローレンツ変換の導き方〉を参照)。 この変換式が示すもっとも著しい特徴は,空間と時間(xt)とが互いに移り変わることである。…

※「ローレンツ変換」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

ローレンツ変換の関連キーワード運動の第一法則慣性系慣性力世界線等速運動等速度運動特殊相対性理論慣性運動特殊相対論不等速運動

今日のキーワード

太陽系外惑星

太陽以外の恒星を回る惑星。その存在を確認する方法として、(1)惑星の重力が引き起こす恒星のわずかなふらつき運動を、ドップラー効果を用いて精密なスペクトル観測により検出する、(2)惑星が恒星の前面を通過...

続きを読む

コトバンク for iPhone