コトバンクはYahoo!辞書と技術提携しています。

剛体 ごうたいrigid body

ブリタニカ国際大百科事典 小項目事典の解説

剛体
ごうたい
rigid body

大きさを無視できない物体を力学的に論じるとき,構成部分の間の距離が絶対に変らない仮想的な物体を剛体と呼ぶ。剛体はどんな力を受けても形や体積を変えない。剛体の運動は,重心に全質量が集中した仮想的質点が行う重心運動と,重心のまわりの回転運動とに分離して論じることができる。

出典|ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について | 情報

デジタル大辞泉の解説

ごう‐たい〔ガウ‐〕【剛体】

外力が加わっても形や大きさの変わらない、力学上の仮想的な物体。

出典|小学館デジタル大辞泉について | 情報 凡例

百科事典マイペディアの解説

剛体【ごうたい】

力を受けても変形しない物体理想。つまり,剛体内のどの2点をとっても,その間の距離はいつも一定である。現実には存在しないが,力学で取扱いが簡単なので,質点とならぶ重要な概念になっている。
→関連項目運動の法則気体分子運動論偶力こま(独楽)コワレフスカヤ作用点実体振子連続体(物理)

出典|株式会社日立ソリューションズ・クリエイト百科事典マイペディアについて | 情報

世界大百科事典 第2版の解説

ごうたい【剛体 rigid body】

力を加えても変形しない理想的な物体。生卵などは回転すると形はほとんど変わらないが,内部で流動を生ずるから剛体に近いとはいえない。したがって,物体内のどの2点をとってもその距離が不変であるものを剛体といったほうが正確である。固体の運動を扱うとき,変形や振動を考えると非常にめんどうになるが,剛体という理想化を行うと,運動が6個の変数で記述できるので,扱いがずっと簡単になる。変数のとり方にはいろいろあるが,剛体の任意の1点(例えば重心)の位置X,Y,Zと,剛体に固定した直交座標系の方位を示すオイラー角(回転運動)θ,φ,ψとを用いることができる。

出典|株式会社日立ソリューションズ・クリエイト世界大百科事典 第2版について | 情報

大辞林 第三版の解説

ごうたい【剛体】

外部から力が働いたときに、その変形が無視できると考えられる物体。質点とともに、力学上重要な概念。

出典|三省堂大辞林 第三版について | 情報

日本大百科全書(ニッポニカ)の解説

剛体
ごうたい

力が働いても変形することのない物体をいう。しかし剛体というのは物質の種類に直接関係しない。多くの固体は、その空間的な運動あるいはつり合いなどを研究するときは剛体として扱われるが、その変形を考察するときは剛体ではない。人体のようなものも、肢体を動かさない運動の研究に関しては剛体として扱われる場合がある。
 剛体の運動は、その重心の運動と、重心の周りの回転運動とが合成されたものである。剛体のつり合いは次のように考えられる。剛体の1点に働く力がつり合うのは質点の場合と同様であるが、そのほかに、剛体は伸び縮みしないため、剛体の中の一つの線分の両端に、それと平行で互いに反対向きの大きさの等しい力を加えても、なんの影響もない。これを利用すれば、(1)力をその線上の他の点に移すことができる。(2)剛体の異なった2点に働く平行な力を一つの力に合成することができる。
 このようにしても一つの力に合成できないのは、大きさが等しく平行で反対向きの二つの力であり、これを偶力という。偶力を一つの線分の両端に働くそれと垂直な二つの力で表したとき、線分の長さと力の大きさの積すなわち偶力のモーメントで特徴づけられる。結局、剛体のつり合いは、力とそのモーメントのつり合いで決めることができる。
 こうしてみると、剛体とは、物体が運動やつり合いにおいてもつ性質の一側面を抽象したものであるということができる。さらに抽象化されたものが質点である。[宮原将平]

出典|小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について | 情報 凡例

剛体の関連キーワードバーカー‐ヘンダーソンの理論アインシュタインの粘度式ポアンソー運動(力学)オイラーの運動学的定理オイラーの運動方程式オイラーの固定点定理剛体振り子・剛体振子実体振り子・実体振子物理振り子・物理振子ポアンソーの定理チャンドラー周期複振り子・複振子連続体(物理)剛体バネモデルオイラーの周期平行軸の定理アルダー遷移オイラー周期振り子・振子ダランベール

今日のキーワード

存亡の機

引き続き存在するかここで滅びてしまうかという非常に重大な時。存亡の秋(とき)。...

続きを読む

コトバンク for iPhone

コトバンク for Android

剛体の関連情報