コトバンクはYahoo!辞書と技術提携しています。

次元 じげん dimension

翻訳|dimension

6件 の用語解説(次元の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

次元
じげん
dimension

物理量 Q の大きさや形態は問題にせず,種類だけを指定するものを Q の次元,あるいはディメンションといい,[Q] で表わす。たとえば,振り子の周期,放射能の半減期,人の寿命などはすべて時間Tという種類の量であるから,[周期]=[半減期]=[寿命]=T などと表わす。

本文は出典元の記述の一部を掲載しています。

次元
じげん
dimension

数学において,空間内の点を指定するのに必要な独立な座標の数。直線上の点は1つの実数で,平面上の点は2つの実数で,普通の空間内の点は3つの実数で指定され,それぞれ次元の数は1,2,3である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

じ‐げん【次元】

数学で、一般的な空間の広がり方の度合いを表すもの。座標の数で表される。線は一次元、面は二次元、立体は三次元。空間は三次元であるが、n次元や無限次元も考えられる。
物理量を長さ・時間・質量の積の形で表示したもの。
物事を考えたり行ったりするときの立場。また、その程度や水準。「話の次元が低い」「それとこれとは次元の違う問題だ」

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

じげん【次元 dimension】

ディメンションともいう。(1)数学における次元 常識的には,ユークリッドの《ストイケイア》にあるように,線とは幅のない長さ,面とは長さと幅をもつもの,立体とは長さと幅と高さをもつものとされ,また線の端は点,面の端は線,立体の端は面であるとされている。このような理由で,点を0次元,線を1次元,面を2次元,立体を3次元の図形と呼んでいる。このことは点の位置は解析的には線上では一つの実数で,面上では二つの実数の組で,立体内では三つの実数の組で表されることに対応している。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

じげん【次元】

〘物〙 いくつかの基本的物理量に対して、一般の物理量がどのような関係をもつかを示す式。例えば、質量 M 、長さ L 、時間 T を基本量とすれば、面積 S は、[S ]=[L 2] と書ける。速度 V 、力 F はそれぞれ [V ]=[LT -1], [F ]=[MLT -2] で表される。これらをそれぞれの物理量の次元といい、 M L T の指数を M L T に関する次元という。ディメンション。
〘数〙 空間のひろがりの度合を表す数。例えば、直線上の点の座標は一つの数で表され、平面上の点の座標は二つの数の組で表され、空間の点の座標は三つの数の組で表されるので、それぞれ一次元・二次元・三次元であるという。一般に n 次元の空間や、無限次元の空間も考えられる。
ものの見方や考え方の立場。また、考え方や意見などを支えている思想や学識などの水準。 「 -の異なる意見」 「低い-の話」 〔「数学ニ用ヰル辞ノ英和対訳字書」(1889年)に英語 dimension の訳語として載る〕

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

次元
じげん
dimension

ディメンション、ジメンションともいう。空間内において、各点を指定するのに必要な座標の数をその空間の次元という。ユークリッドの『原本』(『ストイケイア』)では、「点とは部分をもたないものである。線とは幅のない長さである。面とは長さと幅のみをもつものである。立体とは長さと幅と高さをもつものである」と定義しているが、これが次元に関するもっとも素朴な観察であろう。長さ、幅、高さ(あるいは深さ)が次元であり、空間はこの三つの次元をもっている場所の集まりギリシア時代には考えられていた。
 この考えはガリレオによって、さらに明確に次のように述べられている。「空間の1点を通り、互いに直角に交わる直線は三つあり、4本以上の直線を直角に交わらせることはできない。よって空間の次元は3である」。
 このガリレオの説を述べた『天文対話』がローマ法王の忌避に触れていた1637年に、デカルトは『方法序説および三つの試論』を発表したが、この三つの試論の一つが「幾何学」である。これは今日の解析幾何学の誕生を示すものであるが、同時に次元を確定する座標軸が空間に設定されるというアイデアを与えている。すなわち、図Aのように、直線上の点の位置は、基点を一つ固定する(数0を対応させる)と、実数と対応し一つの座標軸で定まる。平面上の点は縦・横の二つの座標軸をとれば、二つの実数の組み(x1, x2)と対応する。そして空間の点は三つの座標軸によって、三つの実数の組み(x1, x2, x3)で表される。よって直線は一次元、平面は二次元、空間は三次元の図形であると考えられる。すると、われわれの直観には訴えることはできないが、四つの実数の組み(x1, x2, x3, x4)の集合として四次元空間(x1、x2、x3は普通の空間の次元で、x4は時間軸であるとみて、四次元空間は物理学などでは時空間とよばれることもある)、五つの実数の組みの集合としての五次元空間、一般にn個の実数の組みの集合としてn次元空間が考えられる(1点は0次元空間とみなす)。こうした考えをさらに拡張して、今日では無限次元の空間もいろいろと考えられている。
 線分や円周などの図形は直線と類似の図形であるので、これらの次元も一次元であるとみなすほうが自然である。そこで、図Bのような数え方で線分(1単体)を何個かその端点で接合してできる図形はすべて一次元図形であるという。この場合、線分はどのように曲がったものでもよいとする。同様に三角形(2単体)と線分とを組み合わせてできる図形は二次元図形である。ここで三角形はどのように曲がっていてもよいので、たとえば球面などは二次元図形である(図C)。一般にn次元以下の単体からなる多面体はn次元の図形である。図形の次元はその局所的なホモロジー群またはルベーグの敷石定理などを用いても定めることができる。われわれは三次元空間の中に生きているので、三次元空間以外の三次元図形や四次元図形などは三次元空間の中では描けないので、現物を示すことはできないが、平面の中に三次元図形の立方体を描くように、四次元の立方体を描いてみると図Dのようになる。[野口 廣]
『田尾鶉三著『次元とはなにか』(講談社・ブルーバックス)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の次元の言及

【異次元】より

…文学的空想における異世界alternate (other) worldと数学の次元概念dimensionとを合成した造語で,正しくは高次元的に存在可能な別世界とでもいうべきもの。近代SF文学のテーマとして盛んにとり上げられて以来,広く一般の関心を呼ぶようにもなった。われわれの空間は縦・横・高さの三次元に存在していると考えられているが,これに時間が加わって四次元の世界が存在しうると想像されており,位相幾何学的にはさらに五次元,六次元,n次元といった空間も式にすることができる。…

※「次元」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

次元の関連キーワード自然淘汰スキー八雲愛人松柏砂山チェリーなんか花菱ぶうぶう

今日のキーワード

カルテット

四重唱および四重奏。重唱,重奏の形態のなかで最も基本的なもので,声楽ではルネサンスの多声歌曲の形式であるシャンソンやフロットラから始り長い歴史をもつ。器楽も同様で,特に弦楽四重奏は室内楽の全レパートリ...

続きを読む

コトバンク for iPhone

次元の関連情報