コトバンクはYahoo!辞書と技術提携しています。

鋳物 イモノ

6件 の用語解説(鋳物の意味・用語解説を検索)

デジタル大辞泉の解説

い‐もの【鋳物】

鉄・青銅・錫(すず)・鉛・アンチモンアルミニウムなどの金属を溶かし、鋳型に流し込んで器物をつくる工法。また、その器物。→打ち物

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

鋳物【いもの】

溶融金属を鋳型に注入,凝固させて取り出された製品。最も多いのは鉄で,銑(ずく)鋳物・鋼鋳物や,可鍛鋳鉄・強靭(きょうじん)鋳鉄など。他の金属ではタングステンモリブデンなど一部の高融点のものを除き銅,銅合金,軽合金,亜鉛合金など多く他の鋳物がある。
→関連項目鋳物工業真空鋳造巣(金属)銑鉄塑性加工鋳鉄中子

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

いもの【鋳物 casting】

金属,合金を溶融し,目的の形状をもつ型(鋳型mold)の空洞に流し込んで凝固させた製品を広義の鋳物と呼ぶ。この意味では,鋳物には,そのままで製品や素形材を得るshaped casting(一般に鋳物と呼ばれる)と,その後,圧延,鍛造などを行うingot casting(インゴット)が含まれることになる。この項では狭義の鋳物について述べる。 鋳物は,金属,合金を溶解(融解ともいう)し,鋳型内の空洞に導いて凝固させるのであるから,液体状の金属(溶湯)の性状や金属の凝固に関する知識,技術が必要とされる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

いもの【鋳物】

溶かした金属を鋳型に流し込んで製造された器物。 ↔ 打ち物

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

ブリタニカ国際大百科事典 小項目事典の解説

鋳物
いもの

鋳造」のページをご覧ください。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

鋳物
いもの
casting

目的製品の形状に対応した型穴をもつ鋳型に溶融金属を注入し、そのまま凝固させるという方法(鋳造法)で製作した金属製品(鋳造品)をいう。金属製品には鋳物のほかに、簡単な形状に鋳造した鋳塊とよばれる一種の鋳物を原材料とし、それに鍛造や圧延などの加工を加えて製作した鍛造品(打物)や圧延品、さらにそれらを溶接して製作した溶接品などがある。鋳物は鍛造品や圧延品に比べて結晶組織が粗く、成分の偏析(凝固の偏り)や巣(空隙(くうげき))を含むことがあり、材質がもろい。しかし鋳物は複雑形状の品物の大量生産がしやすいので、自動車などの耐久消費材その他の機械部品として広く利用されている。[井川克也・原善四郎]

鋳物の起源

鋳物の起源は新石器時代後期に土器焼成用の窯炉で金や銅が溶ける1000℃以上の温度が実現できるようになったときにさかのぼる。最古の鋳物はメコン川上流地方で発見された紀元前4500年の青銅斧(ふ)であろう。中近東では前4000~前3500年に銅斧が石製の開放型で鋳造されるようになり、前3000~前2500年に青銅が製錬されるようになって、柄穴付き青銅工具を中子(なかご)付き合せ型で鋳造する技術がヨーロッパへも広がっていった。中国では黄河中流地方に前1700年前後に青銅文化が生まれ、殷(いん)代には焼成粘土片を組み合わせた鋳型で複雑な文様と美麗な鋳肌をもった多様な形態の祭器を鋳造する技術をもつに至った。青銅に次いで製鉄技術が近東で前1500~前1000年に生まれ、中国でも前400年ころから鉄の製錬が始まったが、時を置かず鋳鉄の技術も現れ、前100年までには鋳鉄製農具が多量に生産されるようになった(ただし、ヨーロッパでは鋳鉄の生産は14世紀からである)。
 日本へは前300年ころから青銅器と鉄器が大陸からもたらされ、前100年ころから中子付き石製合せ型で渡来青銅原料による銅剣や銅鐸(どうたく)の鋳造が始まった。日本の製鉄は400年ころから始まっているが、鋳鉄鋳造の開始は仏教渡来に伴う鋳造技術の再渡来(6世紀)以後である。[井川克也・原善四郎]

日本の鋳物業の発達

仏教とともに大陸から渡来した新鋳造技術は、鋳型材料として真土(まね)とよばれる粘土、砂の混合物を用いる、(1)組合せ鋳型法、(2)蝋(ろう)型法、(3)引型造型法などであった。7世紀から8世紀にかけて飛鳥(あすか)大仏や奈良大仏が(1)で、法隆寺阿弥陀(あみだ)三尊や新薬師寺諸仏が(2)で、諸寺の五重塔九輪や梵鐘(ぼんしょう)が(3)で製作された。奈良大仏は世界最大の鋳造品である。律令(りつりょう)制の下ではこれらの鋳造技術は近畿地方の諸官営工房で伝承されたが、平安時代にはそのほかに国衙(こくが)および荘園(しょうえん)所属の工房にも広がり、青銅製の梵鐘、仏具、鏡、鋳鉄製の灯籠(とうろう)、鍋(なべ)、釜(かま)が各地で製作されるようになった。平安末期にはそれらの工房が直営をやめ、工匠家族が年貢上納を条件に自営するようになった。たとえば河内(かわち)国丹南(大阪府堺(さかい)市美原区)の鋳物師集団は蔵人所(くろうどどころ)の灯籠供御人(くごにん)として鍋、釜の生産とその全国販売を許された。鎌倉大仏の鋳造に参加した丹南鋳物師が東国に土着することによって鋳造技術はさらに広がり、室町時代には各地に金屋(かなや)とよばれる鋳物師集落が成立し、江戸時代には江戸、京都のほかに佐野、山形、水沢、川口、桑名、高岡などが鋳物産地として栄えた。これらは明治時代における工業近代化の基盤をなした。
 江戸末期に幕府や諸藩は大砲鋳造、軍艦建造に力を入れ、釜石(かまいし)、鹿児島で洋式高炉が稼動、佐賀、韮山(にらやま)で反射炉により鋳鉄砲が鋳造された。これらはオランダ技術書からの知識と国内技術によるものであった。幕府がオランダ、フランスの技術援助で開設した長崎造船所、横須賀造船所のそれぞれから、機械鋳物用の乾燥型造型法および生砂(なまずな)型造型法が国内に普及した。
 明治政府もこれを引き継ぎ、海軍の横須賀、呉(くれ)、佐世保(させぼ)、舞鶴(まいづる)の各工廠(こうしょう)で優れた鋳造技術が育ち、後年民間の業界を先導することになった。また明治に入って民間の造船所もその数を増し、船舶建造のほかに陸用ボイラー、陸用蒸気原動機、鉱山機械、橋梁(きょうりょう)などにも進出し、鋳造製品の種類も多様化した。さらに都市の近代化に必要な上下水道の管を鋳鉄でつくるため大規模な民間工場も生まれた。
 明治中期から昭和10年代までは国力の伸長とともに鋳造工業も大いに発展した。このときに幕末期から明治にかけて生まれた大企業と、旧来の鋳物産地の二重構造が、後者は前者の下請け的性格をもつようになり、互いに支え合って鋳造工業の発展に寄与した。またこの時期は冶金(やきん)工学、機械工学、化学工学など鋳造技術の基礎となる学問が発達し、鋳物用金属材料、鋳型材料および造型法、鋳型の設計など学問的に基礎づけられて鋳造技術は一段と発展した。[井川克也・原善四郎]

鋳物の種類と進歩

鋳物を材質別に分けると、鋳鉄鋳物、鋼鋳物、銅合金鋳物、軽合金鋳物となる。[井川克也・原善四郎]
鋳鉄鋳物
鋳鉄鋳物は、溶解炉としてキュポラが普及し、燃料としてコークスが使われ、送風には電力による送風機が使われるようになって、溶解量、溶解速度、溶解温度が著しく向上した。鋳鉄の材質も炭素、ケイ素、マンガンの各量の調整によって種々変化することがわかり、銑鉄(せんてつ)や鋼屑(くず)の配合によってパーライト地に均一に片状黒鉛の分布したいわゆる菊目組織の鋳鉄鋳物が得られ、この材料が耐摩耗性に富み、引張り強さも大きく、機械部品に適していることが明らかにされた。また反射炉を使って鋳鉄を溶解し、成分をよく調整して、内面に金型を当てた鋳型に鋳込んで鋳物表面を硬くするチルド鋳物によるロールの製造に成功し、このロールは鋼の圧延に広く用いられた。さらに可鍛鋳鉄鋳物の製造に成功したのも明治末期で、白鋳鉄鋳物を焼鈍することにより、きわめて延性に富んだ鋳鉄が得られ、鉄管用継手として水道普及による膨大な需要にこたえることができた。[井川克也・原善四郎]
鋼鋳物
鋼鋳物は、溶解温度が高く、凝固収縮も大きいので引け巣やピンホールなどの空隙(くうげき)が生じやすく、鋳造に高度の技術が必要である。明治年間はおもに平炉がその溶解に用いられ、溶解時間が長く温度も不十分であったので、なかなか良品を得ることはむずかしかった。大正年間に入って、初めてエルー式電弧炉が導入され、良質の鋳鋼品がつくられるようになった。[井川克也・原善四郎]
銅合金鋳物
銅合金鋳物は、るつぼ炉で溶解され、銅88%、スズ10%、亜鉛2%の青銅がもっとも多く用いられ、砲金ともよばれている。銅合金は耐食性、耐海水性、靭(じん)性に富んでいるので、艦船方面に広く用いられる。その意味で海軍では活発な研究を行い、艦船の推進機の材料として1905年(明治38)ごろから青銅にかわって亜鉛40%、マンガン5%、アルミニウム1%以下のマンガン黄銅が用いられ、さらに昭和年代に入って亜鉛10または15%、ケイ素4%のシルジン青銅が使われるようになった。[井川克也・原善四郎]
軽合金鋳物
軽合金鋳物は、アルミニウム系、マグネシウム系いずれも昭和年代に入ってから製造されるようになった。鋳造用アルミニウム合金としてはニッケルを含むY合金、ケイ素を含むシルミン、銅を含むラウタル、マグネシウムを含み耐食性のあるヒドロナリウムなどが航空機工業の発展に伴ってそれぞれの特徴に応じて用いられた。
 一方、マグネシウム合金は、アルミニウム、アルミニウムと亜鉛、マンガンなどとの合金が用いられたが、溶解時に酸化されやすく、鋳型にも酸化防止のくふうが必要で、マグネシウム合金鋳物の普及は容易には進まなかった。
 また昭和10年代にはアルミニウム合金のダイカスト(金型に溶融合金を圧入して凝固させる方法)も活況を呈するようになった。
 このように明治中期から昭和10年代にかけて発展したわが国の工業、ひいては鋳物工業も、第二次世界大戦が終わり敗戦を迎えてしばらくはまったくその生産が止まった。しかしその後の経済成長は目覚ましく、1950年(昭和25)の鋳物生産量が100万トン弱であったものが、73年には800万トンとなり、80年でも700万トンを上回っていた。
 その後は、ほぼ横ばいに推移し、2006年(平成18)の生産量は688万トンとなっている。[井川克也・原善四郎]

製造技術の革新

鋳鉄鋳物については球状黒鉛鋳鉄の発明がある。これによって、もろいという鋳鉄の弱点が払拭(ふっしょく)され、強度部材にも用いられるようになった。自動車のクランクシャフトや高荷重に耐える鋳鉄管などに多用されている。また鋳鉄の溶解に低周波誘導電気炉が用いられるようになり、鋼屑に加炭して鋳鉄溶湯を得ることができ、成分や温度の制御、溶湯保持などが容易に行えるようになった。
 鋼鋳物の分野では鋳造方案や押湯の設計などに電子計算機を利用して健全な鋳物をつくるための理論的解明が進められている。
 銅合金の分野では、船舶の推進機材料として10%アルミニウムを含むアルミニウム青銅が伸びている。
 軽合金鋳物ではとくにアルミニウムダイカストの伸びが著しい。10%ケイ素を含むシルミン合金が用いられる。また高純度亜鉛地金が精錬技術の向上によって容易に入手できるようになったので、従来、鉛、カドミウムなどの不純物のため、もろくて使用できなかった亜鉛ダイカストが、今日では広く用いられるようになっている。
 鋳物の工場生産能率は鋳型製造技術によって支配されるといっても過言ではない。第二次世界大戦までの鋳型といえば、珪砂(けいさ)に粘土と水を混ぜて粘結したものに限られていたが、その後今日まで枚挙にいとまがないほど新しい造型法が次々と誕生した。フェノール樹脂を粘結剤とするシェルモールド法は、粘結剤として用いられる有機物が、鋳込み後、熱分解して粘結力を失うので、鋳物砂の再生がきわめて容易である。次に、水ガラスを粘結剤とし炭酸ガスを吹き込んで反応させ短時間に硬化させる炭酸ガス型法は、鋳型強度が大きく、乾燥型にかわるものとして普及した。また塩化ビニル膜を利用して砂型内を真空にし、外圧によって鋳型を固めるVプロセス法は、粘結剤をまったく使わない方法で、日本で発明され、世界的に注目を集めている造型法である。
 しかし、粘土と水分によって鋳物砂を粘結する在来の生砂型法は、造型が簡単で、経費も低廉ですむので、生砂型用の造型機が高速化、高圧化、大型化することによって現在でも造型法の主流を占めている。
 精密鋳物の製作法として、現在ふたたび奈良時代からあった蝋(ろう)型法が復活している。ロストワックス法とよばれるもので、精密な金型によってワックス製の模型をつくり、これを耐火物粉末とエチルシリケート溶液の混合泥状物に埋め、乾燥、焼成してワックスを溶かし出し、鋳型とする方法である。この方法は、タービンブレードのように複雑曲面をもっていて、ほかの加工法ではその曲面をつくりだすことがむずかしい部品や、塑性加工や切削加工ができない特殊合金型部品の製作などに応用されている。[井川克也・原善四郎]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の鋳物の言及

【鋳造】より

…広義には,鋳型内の空洞に溶融金属(湯,溶湯ともいう)を流し込み凝固させて,所定の形状の製品を得る金属加工法。元来は金属について行われていたが,今日ではプラスチックなどにも用いられる。金属では,塑性加工,粉末冶金,溶接と並ぶ代表的な加工法である。成形品には,そのまま製品とする鋳物と,塑性加工の素材となるインゴット(鋳塊)があり,これらの作製の全工程が含まれる(〈鋳物〉〈インゴット〉の項目を参照されたい)。…

【プラスチック成形加工】より

…瓶の製造に適しており,ポリエチレン,ポリプロピレンのほか,最近ではポリエチレンテレフタレート(PET)の瓶もつくられている(図5)。(6)注形法casting 熱硬化性樹脂に用いられる。液状樹脂に硬化剤を加え,所定の形に流し込み,加熱硬化させて取り出す方法である。…

【プラスチックフィルム】より

…(9)ポリイミド(ポリアミドイミド)フィルム 耐熱性,電気特性にすぐれ,精密フレキシブルプリント配線の回路基板として用いられ,小型計算機,カメラ,時計などに組み込まれている。
[成形法]
 プラスチックフィルムの成形法としては,セロハンのように,ポリマー溶液を凝固液中に押し出して固化させるキャスティング法casting,ポリ塩化ビニルフィルムなどのように,ポリマーに可塑剤,添加剤を加えて混合し,これをロール間に送って加熱圧延(カレンダーがけ)をくりかえしフィルム化するカレンダー法calendering(図1)などがあるが,最も一般的な方法は溶融押出法である。溶融押出法には次に述べるインフレーション法とT‐ダイ法がある。…

【鋳金】より

…金工の成形技法の一つ。鋳造(ちゆうぞう),鋳物(いもの)ともいう。加熱による金属の溶解性を利用したもので,金属を溶解してあらかじめ作っておいた鋳型(いがた)に流し込み,冷やしてから製品を鋳型から取り出して仕上げる技術。…

※「鋳物」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

鋳物の関連キーワード透化複合金属材料メタリコン形状記憶合金柱状燃料溶融希薄合金共融合金貝殻状

今日のキーワード

太陽系外惑星

太陽以外の恒星を回る惑星。その存在を確認する方法として、(1)惑星の重力が引き起こす恒星のわずかなふらつき運動を、ドップラー効果を用いて精密なスペクトル観測により検出する、(2)惑星が恒星の前面を通過...

続きを読む

コトバンク for iPhone

鋳物の関連情報