コトバンクはYahoo!辞書と技術提携しています。

航法 こうほうnavigation

翻訳|navigation

6件 の用語解説(航法の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

航法
こうほう
navigation

船舶や航空機などの位置,針路,航程を決定して運航させるための科学。初期の船乗りは,風向きを判断しながら陸上の目印になるものをたどって航路を定めた。陸地が見えなくなる沖まで航海に出た古代フェニキア人(→フェニキア)やポリネシア人は,空の星を頼りに航路を定めた。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
ブリタニカ国際大百科事典 小項目事典について | 情報

デジタル大辞泉の解説

こう‐ほう〔カウハフ〕【航法】

船舶または航空機が、所定の二地点間を、所定の時間内に正確かつ安全に航行するための技術・方法。地文(ちもん)航法天文航法電波航法などがある。
船舶が他船との衝突を避けるため、または危険な海域や狭い水路での安全航行のために、操縦・航路などを定めた方法。

出典|小学館
デジタル大辞泉について | 情報 凡例

百科事典マイペディアの解説

航法【こうほう】

船や航空機が,ある地点から他の地点まで安全に航行するために,現在位置を確定し航行すべき針路や距離を定める方法。船の場合を航海航法,航空機の場合を空中航法というが,原理的にはほぼ同一である。
→関連項目航海計器航空

出典|株式会社日立ソリューションズ・クリエイト
百科事典マイペディアについて | 情報

世界大百科事典 第2版の解説

こうほう【航法 navigation】

船,航空機などの移動体を,出発するある地点から目的とする他の地点に導く技術,またはその方法を航法という。航法が必要とされる理由は,第1に移動体を繰り返し同じ地点に導くためであり,第2に移動体を能率よく確実にしかも安全に導くためである。 航法のもたなければならない基本機能は,移動体が通るのに望ましい経路である航路の設定,定められた航路を進むための針路および速力の設定,任意の時間の航路上の予定点からのずれを検出するための位置の決定および環境・外乱を考慮してのずれの修正(針路・速力の変更)に関する機能である。

出典|株式会社日立ソリューションズ・クリエイト
世界大百科事典 第2版について | 情報

大辞林 第三版の解説

こうほう【航法】

船舶・航空機・ロケットなどが、二地点間を安全かつ能率的に航行する技術。

出典|三省堂
大辞林 第三版について | 情報

日本大百科全書(ニッポニカ)の解説

航法
こうほう
navigation

船舶、航空機、自動車などの乗り物を、目的地まで安全かつ経済的に導く方法。広義には、海上または空域の交通安全のために、法律や規則によって定められた船舶、航空機の操縦法も含まれる。
 航法は経路によって陸上航法、海上航法、水中航法、航空航法、宇宙航法に分けられる。陸上航法ということばはあまり使われないが、太古、シカやウサギの生息地や木の実の実る森と住居との往復程度の行動にも、距離・方向・位置など航法の知識が必要であった。現在でも砂漠や原野を走行するラリーなどでは航法が必要である。しかし陸上では、繰り返し往来しているうちに、自然に道や見覚えのある目標ができ、それらが相当期間変わらずに残っていて、改めて航法の知識を必要とすることもなくなることが多い。
 これに対し海上では、沿岸航海を除き、洋上では陸上のような道、目印、景色などがなく、何度も航海した航路でも、そのつど各種の航法を組み合わせて利用せざるをえない。大航海時代を経て大洋の航海が盛んに行われるようになるとともに航法は進歩・発達し、19世紀末には位置の線航法がほぼ理論的に完成された。航法とは航海に関する用語であると一般に考えられがちな理由はここにある。その後、空中・水中・宇宙などに人類が進出する時代になったが、航法の原理は海上とそれほど変わらない。位置の二次元的表示と三次元的表示に根本的差異があるようにいわれるが、厳密には海上・陸上でも三次元表示が必要である。しかし、地心からの距離が一定な仮想の地球表面に山岳や海溝を投射して位置を示し、高さや深さを別に扱って、方向のみによる緯度・経度で示す。こうすることによって数学的扱いがきわめて簡単になる利点がある。[川本文彦・青木享起・仲村宸一郎]

海上

海上航法は、自船の状況、気象、海象、海陸の分布などを考慮したうえでの安全で経済的、能率的な航路の選定、目的地までの距離の算定、現在位置の推測および測定、針路の決定、目的地までの残航程と所要時間の算出などがおもなもので、狭義の航海はこれらの繰り返しによって実施される。
 光学を主とした従来の地文・天文航法に加えて、電子工学の発達によるレーダー、ロラン、デッカ、オメガ、航行衛星などの新たな航行援助方式が相次いで用いられるようになったが、航法ということばが不統一に用いられて混乱しているのが現状である。本項では一般の慣習に従った。
 研究の進歩により、波高と船に対する波の相対的な方向によって船の速度が低下する割合が算出できるようになり、他方、1週間程度の天気予報が発表されて、海域ごとの風向、風速、吹送時間、吹送距離から波浪予測ができることから、これも算入して、目的地まで最短時間または最少燃料消費で達する航路を選定できるようになった。天候に支配される経済運航重視のこのような航路選定法を最適航法または天気航法といい、この方法で選んだ航路を最適航路という。各国の気象機関からの情報を集めて解析し、最適航路を選定して契約船舶に通報する会社も営業している。
 また、定義に述べたように、他船との衝突を避けるための国際海上衝突予防規則(国内法では海上衝突予防法)、船舶の輻輳(ふくそう)する海域での危険防止のための海上交通安全法、港内における船舶交通の安全のために港則法などの法規で定められた船舶操縦法、航路通行法などを航法という場合もある。[川本文彦・青木享起・仲村宸一郎]

航空

原理的には海上航法と大差はなく、初期にはほとんど同じ方法が用いられた。しかし、航空機は船舶に比べて速度がはるかに速く、三次元の空間を移動し、空中で停止できず、滞空時間が短いなど、異なった条件が多いので、航空機独特の航法が考えられるようになった。しかし航法装置の近代化に伴い、航空機と船舶(潜水艦を含む)との間にふたたび共通する面が多くなってきたので、航空を主とし他を包含して解説する。
〔1〕地文航法(pilotage navigation) 船舶の地文航法(geo-navigation)中の沿岸航法(coastal or pilotting navigation)にあたる。空中から操縦士が地上の道路や顕著な目標を視認して飛行する方法である。初期はこの方法のみが用いられていたが、これのみでは、夜間、視界のないとき、物標のない場所では飛行できない。
〔2〕推測航法(dead reckoning navigation) 空中における航空機の位置誤差の大きな要因は風向と風速に関係する。そこで、予測した風のベクトルと航空機の機首方位と対気速度のベクトルを合成することによって、あらかじめ確認した位置から針路と距離を算出し、自機の推定位置を得て飛行する推測航法が考えられ、基本的な航法となった。
〔3〕天測航法(celestial navigation) 航法の精度をあげる方法の一つである。六分儀により天体の高度と方位を測定して現在位置を知る方法で、高い精度が得られる。しかし、専門の航空士が乗り組む必要があり、悪天候のとき利用できない欠点がある。慣性航法装置を利用した航法が発達するにつれほとんどなくなっている。
〔4〕無線航法(radio navigation) 従来の航法の欠点を克服するために、第二次世界大戦を契機として急速に発達した。地上に設置された航法援助無線標識からの電波を機上の受信機でとらえ、これらの無線標識からの距離や方位を測定して位置を求める。次のような種類がある。
(1)NDB(無指向性無線標識施設 non-directional beaconの略称) 地上局から無指向性の中波または長波の電波を発信する。この電波を機上のADF(自動方向探知機 automatic direction finderの略称)で受信してNDBの方向を知る。有効距離は昼間100~500キロメートルであるが、夜間や悪天候時には誤差が大きくなる。
(2)VOR(超短波全方向式無線標識施設 VHF omni-directional radio rangeの略称) NDBと同様に地上局からの方位を測定する。超短波の指向性電波を使用するので、精度は高いが、到達距離は短い。
(3)DME(距離測定装置 distance measuring equipmentの略称) 航空機からの電波に地上局が応答電波を発し、機上で質問電波との時間差を測定して地上局までの距離を求める。通常VORと組み合わせて使われる。船舶でも同じ装置が運動測定用に用いられている。
(4)TACAN(タカン)(戦術航法システム tactical air navigationの略称) VOR/DMEと同様に、地上局からの方位と距離を同時に求める方式で、軍事目的のために開発された。
(5)LORAN(ロラン)(long range navigationの略称) 遠距離用双曲線航法である。地球上の2点から発信される電波の到達時間差が一定となる地点をつなぐと、チャート上に2点を焦点とする双曲線が描かれることを応用している。二つのロラン局から発信されるパルス波の時間差を測定して位置の線を得る。同じ手順で別の一対の局から得た位置の線との交点から自機の位置を求める。中波を使用するロランAと長波を用いるロランCがあり、ロランAは漸次廃止されつつある。
〔5〕グリッド航法(grid navigation) 北極圏飛行の航法上の問題点を克服するために開発された特殊な方法。大圏(grid circle)がほぼ直線で表されるような特殊な投影法に基づく地図を用い、緯線、経線のかわりにグリッド(格子)を引き、方位も、実際の北極とは関係のないグリッドノース(grid north)を定める。グリッド航法では、仮想の北(グリッドノース)を地図の基準として定めるのである。この地図と一定の方向を保つ性質をもつディレクショナル・ジャイロ(directional gyro)を組み合わせて航行する。
〔6〕自蔵航法(self contained navigation) 略してSCNともいう。航空機が地上の施設に依存せずに機上の航法装置だけで飛行する航法である。地上局の故障や戦乱などにも影響されない利点がある。海上船舶や潜水艦船にも、この外部の施設に依存しない航法が用いられるようになってきた。地上の航行援助施設に依存しないで、ドップラー航法や慣性航法装置のように機上の航法装置により独力で航法を行う装置を総称して自蔵航法装置という。
〔7〕ドップラー航法(Doppler navigation system) 航空機にはドップラーレーダー(Doppler radar)、船舶ではドップラーソナー(Doppler sonar)が使用される。ドップラーレーダーは電波を利用する方法で、自蔵航法装置として最初に開発された。航空機から発射した電波と、地面から反射された電波との周波数の差を測定し、機上のコンピュータで処理して対地速度と偏流角を算出し、位置を求める。ドップラーソナーは超音波を利用する方法で、原理的にはドップラーレーダーと同様である。しかし、水深の浅い海域で海底からの反射が得られる間は、海底を対象とした対地速度と偏流角算出によるが、水深が深くなって海底からの反射が得られなくなると、対水反射のドップラー現象を利用して、対水速度と偏流角を算出して位置を求める。対水の場合は、当然、水の移動の誤差が含まれる。
〔8〕慣性航法(inertial navigation) 物体が移動するときはつねに加速度が加わっているが、この加速度を積分すれば速度が、さらにもう一度積分すると移動した距離が出るという、この加速度(慣性)を利用した慣性航法装置(INS、IRSなど)による航法。航空機に、重力の方向に対しつねに平行状態を保つジャイロを使った水平安定板(プラットホーム)を設け、ここに高感度の加速度計を置き、加速度を検出し、内蔵したコンピュータで前述の解析を自動かつ連続的に行い、速度、位置、進行方向などを求めて航行するものである。また、自動操縦装置に結び付け、飛行前にあらかじめ目的地までのフライトプランをコンピュータに入れておけば、地上の航法援助なしに自動的に所定の飛行コースにのって、目的地に向け飛行できる。
〔9〕オメガ航法(omega navigation) 10~14キロヘルツの超長波(VLF very low frequency)を使用した双曲線航法。二つの送信局から発射される電波の位相差を測定して位置を決定するもの。オメガの特徴は、VLFを使用しているので、約1万キロメートルに1局ずつ設置すれば、地球上にわずか8局の送信局を設置することによって、航空機は地球上のいかなる地点においても位置決定できることである。また、VLFは海面下約15メートルまで伝播するので、潜水艦は潜水したまま位置を知ることができる。なお、2001年現在オメガ局は、ノース・ダコタ(アメリカ)、ハワイ島(アメリカ)、ノルウェー、リベリア、対馬(つしま)(日本)、レユニオン島(南インド洋上にあるフランスの海外県)、アルゼンチン、オーストラリアの8局が運用中である。本質的にはロラン航法と同じ双曲線航法であるが、送信局相互間の距離はロランに比べ各段に長いことが特徴である。
〔10〕広域航法(area navigation) 交通量の増加に備えて開発された新しい航法システム。地上の航行援助施設からの信号の有効範囲内、あるいは自蔵航法装置の機能範囲内で、任意の希望コースを設定することができる。また、つねに航法装置の現在位置が直読式で得られる。この航法を利用することにより、空域内に任意の航路を設定できるので、その空域の許容交通量を増大させることが可能となる。システムとしては、次のような方法がある。
(1)VORおよびDME(距離測定装置)と機上のコンピュータにより希望コース、現在位置を算出する方法。
(2)INS(慣性航法装置)により希望コース、現在位置を得る方法。
(3)INSをVOR、DMEの組み合わせ、2組のDMEあるいはGPS(global positioning system)によって修正し、正確な希望コース、現在位置を得るもの。
 広域航法(エリア・ナビゲーション)の希望コースは、ウェイポイント(waypoint)とよばれる地図上の特定点を結ぶことによって定められる。ウェイポイントは座標によって表され、座標系のなかで任意の位置に定めることができる。座標系のとり方は通常、VORおよびDME局からの距離と磁方位による座標、あるいは緯度、経度による座標が用いられている。さらに、ウェイポイントに高度の要素を加え、希望コースを三次元空間内のコースとして設定することができる。PMS(performance management system)またはFMS(flight management system)のようなコンピュータシステムを装備した航空機では、この三次元のエリア・ナビゲーションが可能である。
〔11〕衛星航法(global positioning system) 全地球航法装置、全地球測位システム(GPS)ともいう。全世界を有効範囲とする衛星を利用した精密衛星航法システムであり、アメリカ国防総省が中心となり開発された。基本概念は、地球を周回する24個の衛星から4個以上の衛星を選択し、信号を受信することによりおのおのの衛星から距離を知ることができ、三次元の位置を得ることが可能となるものである。GPSの使用により、航空機は離陸から着陸まで単一の航法援助装置で飛行できる。また、得られる位置精度と速度精度のよさから、航路上の航空機の機数を増加させるFANS(future air navigation system)計画が進められ、アメリカではすでに実用化されている。日本では、国土交通省航空局が具体的導入計画を作成しており、ごく近い将来に実施段階に入る予定である(2002年3月現在)。[川本文彦・青木享起・仲村宸一郎]

出典|小学館 日本大百科全書(ニッポニカ)
日本大百科全書(ニッポニカ)について | 情報 凡例

世界大百科事典内の航法の言及

【航海】より

…航海という言葉のもつ意味は,船で海を航行することであり,また出発点から目的地までの海を渡ることである。この航海に対応する英語のnavigationの意味は,語源から見ると船を動かすこととか導くこととなるが,ほとんど航海との差はないといってよいだろう。しかしnavigationに対応する日本語には航海と航法があるので,逆に航海と航法を区別しなければならないこととなる。…

【航海】より

…この航海に対応する英語のnavigationの意味は,語源から見ると船を動かすこととか導くこととなるが,ほとんど航海との差はないといってよいだろう。しかしnavigationに対応する日本語には航海と航法があるので,逆に航海と航法を区別しなければならないこととなる。両者に判然たる差があるわけではないが,強いていえば,航海技術あるいは技術的に見た航海に対して航法という言葉が用いられている。…

※「航法」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
世界大百科事典 第2版について | 情報

今日のキーワード

稀勢の里寛

1986- 平成時代の力士。昭和61年7月3日生まれ。中学卒で鳴戸部屋に入門し,平成14年3月初土俵。16年5月新十両,同年11月には18歳4ヵ月で新入幕をはたす。18年7月新三役小結,21年3月新関...

続きを読む

コトバンク for iPhone

航法の関連情報