翻訳|entropy
エントロピーとは,そもそも複雑さの度合を表すための熱力学的概念であり,複雑さまたはでたらめさが増すほどエントロピーは大きくなる。
理想気体が,温度一定の下で,非常にゆっくりと(すなわち準静的に)膨張してその体積がもとの体積の2倍になった状態を考えてみよう。どちらも同じ温度で平衡状態になっているが,これら二つの状態は,明らかに熱力学的に違った状態である。2倍の体積の状態のほうが熱的により乱れた状態であるといえる。なぜなら,体積が2倍となった容器の中央に仮想的な仕切りをつけたとすると,中の粒子は,もとの半分の体積の場合と比較して,仮想的な仕切りを乗り越えて両方に入り乱れることができるからである。もっと直観的にいってしまえば,ある体積の容器の中にハエを入れたときと,その2倍の体積の容器に入れたときとで,どちらのほうがハエの飛び方が複雑になるかを考えれば類推できるであろう。この乱れぐあいを定量的に表現する物理量がエントロピーなのである。理想気体が一定の絶対温度Tの下で準静的に,いいかえれば可逆的に膨張し,その際熱源から熱量Qを吸収したとすると,QとTとの比Q/Tは,初めの状態と終りの状態を固定すれば,途中のどのような経路を通って変化が進んでも一定である。もっと定量的には次のようにして説明できる。体積V1の理想気体nモル(mol)を温度一定の下で,準静的に体積V2(V2>V1)まで可逆変化させ膨張させたとき,熱源から吸収する熱量Qは外部へ対してなした仕事と等しいはずであるから,と表せる。n(mol)の理想気体に対してはその圧p,体積V,絶対温度Tの間に,pV=nRTの状態方程式が成立するから(Rは気体定数),この関係を用いて上記の式を書き換えると,となる。すなわち,Q/T=nR log(V2/V1)となり,これは初めと終りの状態(今の場合は体積であるが)にのみ依存する状態量となる(ただし,適当に基準を決めることは必要である)。しかも,体積が増加して状態が乱れるほど,その対数に比例してQ/Tは大きくなる。このように,Q/Tが状態の乱れの度合を表していることは明らかで,このQ/TをエントロピーSと定義する。
エントロピーという概念は,熱力学的な状態の変化を特徴づけるものとしてR.J.E.クラウジウスが導入したものであり,その名はギリシア語のentropē(反転する働きの意)に由来し,変化容量の意味で命名されたものである。
エントロピーにミクロな意味づけを与えたのはL.ボルツマンである。彼はミクロな状態の数をWとするとき,そのエントロピーSは,S=k logWで与えられると提案した。ここで,kはボルツマン定数である。ミクロに定義されたエントロピーが,熱力学的に定義されたエントロピーと一致することを示すことは,統計力学のもっとも基本的事項である。直観的には理想気体に対するエントロピーの表式S=Q/T=nR log(V2/V1)で,とくにV2=2V1となる場合を考えるとわかりやすい。1 mol中の気体分子の数,すなわちアボガドロ数N0を用いると,R=N0kであるから,上式はと書き直すことができる(N=nN0)。N個の粒子が仮想的な仕切りのどちら側に入るかというミクロな状態数WがW=2nで表されることを考えれば,ミクロに定義されたエントロピーと熱力学的に定義されたエントロピーの同一性が理解されよう。さらに,二つの系の熱力学的に定義されたエントロピーの和がSA+SBとなるとき,両者を併せた系のミクロな状態の数はWA・WBとなり,ミクロに定義されたエントロピーはk(log WA+log WB)で表せること(logWの加法性),またWの増大と不可逆性の関係などからも両者が一致することが理解される。
通常,非常に小さい無限小の可逆過程に対して,微少量の熱の吸収を⊿Qとすると,系の絶対温度をTとして,この無限小可逆過程に対するエントロピーの変化dSは,dS=⊿Q/Tと表される。Sという状態量の微少な変化量であるから,数学的には⊿Q/Tが完全微分になっていることを意味している。温度Tは,示強性,すなわち体系の大きさによらない物理量であり,一方,熱量Qはエネルギーの一種で,体系の大きさに比例して加法的に多くなる示量性の物理量であるから,エントロピーは示量性の物理量である。一般の無限小過程に対しては,⊿Q≦TdSという不等式が経験的に導かれている。これが熱力学の第2法則である。もし,これが破れていると,一つの熱源から熱をとってそれを全部仕事に変える第2種永久機関が作れることになる。等号は可逆過程に対して成立し,不等号が成り立つ過程を不可逆過程という。すなわち,同じエントロピーの変化dSに対して,熱量の変化がTdSより小さい過程は不可逆であり,逆にいえば,同じ熱量⊿Qの変化に対して,エントロピーが⊿Q/Tより大きな変化をする過程が不可逆過程であるということができる。とくに外部から完全に孤立した系では,熱の出入りは0,すなわち⊿Q=0であるから,熱力学の第2法則はdS≧0と表される。すなわち一つの孤立系においては,その系のエントロピーの総和は,その系内に可逆過程が生じても不変に保たれ,不可逆過程が生じた場合には増加し,どんな場合でも減少することはないということを示しているのである。これが孤立系に対するエントロピー増大の原理である。自然界に起こる過程は,摩擦,熱伝導など不可逆過程が多く,したがって自然界(宇宙)を孤立系とみなせばエントロピーの総和はその極大値に向かって増加していることになる。
→可逆変化 →不可逆変化
エントロピーの概念を用いると,理想的な熱機関の効率ηを計算することができる。最大効率をもつ理想的な熱機関の効率ηは,エネルギー保存則と熱力学の第2法則より,エントロピーの変化をなるべく少なくして,外にとり出す仕事を最大にする過程,すなわち可逆過程に対する効率として求められる。絶対温度T1の高温熱源から熱量⊿Q1=T1dSをとり出し,その一部を仕事⊿Wに変換し,高温熱源からとり出したエントロピーdSをそっくり絶対温度T2の低温熱源に可逆的に返すことによって理想的な熱機関が設定される。すなわち,低温熱源に熱量⊿Q2=T2dSだけ渡すことになるから,効率ηは,η=⊿W/⊿Q1=(⊿Q1-⊿Q2)/⊿Q1=(T1-T2)/T1によって与えられる。したがって,低温熱源の温度T2が小さいほど効率ηは大きくなり,T2=0でη=1となる。それは,温度が低いほど熱量の変化は少なく,エントロピーの受容がますます大きくなるからである。これを裏返しにいうと,低温になるほど,その状態を作り出すのにますます多くのエントロピーを外にとり出さなければならなくなり,絶対0度に到達するのは実現不可能なことを意味している。
なお,このエントロピーの概念は,情報量を表すのにも使われているが,これについては〈情報理論〉の項目を参照されたい。
執筆者:鈴木 増雄
出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
系が絶対温度Tのもとに外界からの準静的過程によって熱量Qを得たとき,関数
S = Q/T
を導入してこれをエントロピーという.微小熱量dQ′に対して,エントロピーの微小変化dSは全微分となり,Sは状態量の一つになる(dQ′のダッシュは全微分でないことを示す).エントロピーという用語はR.J.E. Clausius(クラウジウス)がはじめて用いたことばで,ギリシア語の“変化”という意味からきている.熱力学第二法則は孤立系ではエントロピーが決して減少しないこと,非可逆変化によってつねに増大することを示す.統計力学によると,系のエントロピーは系全体のエネルギーE,粒子数N,体積Vが指定されたとき,その系に可能な状態の数の全体をWとして,
S = k ln W
という関係で与えられる(kはボルツマン定数).この関係式は近似的に,1粒子のエネルギー固有値を ε1,ε2,…,その各固有値にある粒子数を n1,n2,…としたとき,ある特定の一組 n10,n20,…に対して系の状態の数W{nj}は極大となり,その値 W0{nj0}を用いて
S = k ln W0
と表される.この近似は極大値を与える組{nj0}が圧倒的確率でもって実現可能であることを示す.
出典 森北出版「化学辞典(第2版)」化学辞典 第2版について 情報
出典 図書館情報学用語辞典 第4版図書館情報学用語辞典 第5版について 情報
(尾関章 朝日新聞記者 / 2007年)
出典 (株)朝日新聞出版発行「知恵蔵」知恵蔵について 情報
…理想的な熱機関とは可逆的に働く熱機関で,カルノーサイクルに代表される。上で絶対温度の比を定義した関係はQ1/T1=Q2/T2と書きなおされ,可逆過程でエントロピーS=Q/Tが保存されることを表している。絶対温度はエントロピーという重要な量の導入を可能にしたのである。…
…一般に,摩擦による熱の発生など仕事が熱に変わる過程は典型的な不可逆過程であり,一方,熱の発生を伴わない電磁気現象は可逆過程である。 絶対温度Tの物質系の可逆変化で,熱の吸収を⊿Qとすれば,この系のエントロピーの増大⊿Sは⊿S=⊿Q/Tで与えられる。不可逆変化では⊿S>⊿Q/Tの不等式を満たす。…
…これだと,確率が小さいほど情報量が大きいという心理的事実と合うのである。この定義によれば-符号あたりの平均情報量Hはとなり,熱力学でいうエントロピーと同じ形をしているので〈エントロピー〉と呼ばれる。ただし熱力学の場合と異なり負号がついているので〈負エントロピー(ネゲントロピーnegentropy)〉ということもある。…
…そこで,log2Mを,M個の文字からなるアルファベットをもつ情報源のハートリーHartley情報量と呼んでいる。
[エントロピー]
もし,1からMまでの文字が出現する確率p1,p2,……,pMが知られており(すなわち,どの文字がどの程度によく出やすいかなどの情報をもっている場合),各文字を(先ほどのように8ビットと制限せず)長さの異なるビット列に対応させても構わないとすれば,各文字に対応したビット列(符号語)の長さの平均値を,以下にできることが示される。これは,もちろん,多くの文字を対応した符号語の連なりとして仕立てた長いビット列が与えられたとき,符号語と符号語の切れ目を識別できるような(分節可能な)対応関係が保証されているという条件のもとでの話である。…
…しかし,彼の理論では分布の関数形はわかっていて,パラメーターのみが未知とする立場をとっている。ところが尤度関数の意味を問いなおせば,情報量,あるいはエントロピーの概念が重要な役割を果たしていることに思いあたる。これから1973年に赤池弘次(1927‐ )によって提唱された情報量基準AICの概念を理解する手がかりが得られよう。…
…このときどこまで圧縮が可能かという問題に対し,C.E.シャノンによる情報理論はデータを発生する情報源を確率モデルとして定式化し,圧縮後の1文字当りの平均ビット長の下限を与える形で限界を示した。その下限値は無歪み圧縮の場合はエントロピーと呼ばれる。歪みありの圧縮の場合はレート・歪み理論と呼ばれる理論体系が構築されている。…
… 力学的エネルギーに加えて電磁気的エネルギー,化学的エネルギーそして熱エネルギーと,すべての種類の現象にかかわるエネルギー(19世紀後半になるまでは“力”と呼ばれていた)が,相互に変換され,しかもあらゆる過程で保存される量であるというエネルギー保存則は,19世紀後半になってR.マイヤー,ジュール,H.ヘルムホルツら多くの人々の貢献により広く認識されるようになった。しかし熱がエネルギーであるというだけでは不十分であって,温度およびエントロピーとの関係も含めて古典物理学の枠内で熱の概念が確立されたのは,R.クラウジウス,ヘルムホルツ,ケルビン(W.トムソン)らによって熱力学の体系が作られるのをまたなければならなかった。さらに,20世紀にかけてJ.C.マクスウェル,L.ボルツマン,J.W.ギブズらによって気体運動論,そして統計力学が形成され,物質を構成する原子・分子の力学から熱現象を理解することが可能となった。…
…ふつう符号化により得られる形態は記号列であるが,それらの全体を〈符号〉といい,本来の形態に戻し,情報を復元・再現することを〈復号〉という。データ圧縮,誤り訂正符号化,暗号化は,そろって,情報を量として扱う学問体系〈情報理論〉の主要なテーマであるが,データ圧縮が情報源に適合する符号化として,真正の情報量(エントロピー)の近くまでデータ長を削減するのに対し,誤り訂正符号化は通信路に適合する符号化として,情報量としては余分なデータ長を追加する。ここでは,後者の誤り訂正符号化について述べる。…
※「エントロピー」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社「世界大百科事典(旧版)」
カスタマー(顧客)とハラスメント(嫌がらせ)を組み合わせた造語「カスタマーハラスメント」の略称。顧客や取引先が過剰な要求をしたり、商品やサービスに不当な言いがかりを付けたりする悪質な行為を指す。従業...
10/1 共同通信ニュース用語解説を追加
9/20 日本大百科全書(ニッポニカ)を更新
7/22 日本大百科全書(ニッポニカ)を更新
6/17 日本大百科全書(ニッポニカ)を更新
5/20 小学館の図鑑NEO[新版]昆虫を追加