コトバンクはYahoo!辞書と技術提携しています。

腎臓 じんぞう kidney

翻訳|kidney

8件 の用語解説(腎臓の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

腎臓
じんぞう
kidney

上腹部の背側に左右対をなして存在する握りこぶし大の器官。腎臓の働きは,血液中の老廃物を水とともに尿として排除することであるが,これによって血 (体) 液中の各種成分を一定の値に保つのが,最も重要な働きである。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

朝日新聞掲載「キーワード」の解説

腎臓

体内の左右に1個ずつあるソラマメ状の臓器で、体に必要な栄養素を選別して不必要なものを尿として体外に出す機能がある。機能が低下すると体内に老廃物がたまり、尿毒症心不全などの心配が高まる。

(2009-04-29 朝日新聞 朝刊 香川全県 2地方)

出典|朝日新聞掲載「キーワード」
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

じん‐ぞう〔‐ザウ〕【腎臓】

脊椎動物泌尿器官。左右一対あり、暗赤色。ヒトではソラマメ形で、長さ約10センチ。内部は皮質髄質とに区別できる。腎小体尿細管とからなるネフロンにより血液からの尿の生成が行われる

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

腎臓【じんぞう】

脊椎動物の排出器官。腹腔後壁上部に脊柱をはさんで両側にある尿を生成する器官で,泌尿器の主体である。ヒトの腎臓は1個の重さが100g前後,高さ10cmたらずのソラマメ形で,くぼんだ部分を腎門といい,これを内側に向けて位置する。
→関連項目ウイルムス腫瘍腎移植腎盂腎癌腎結石症内分泌腺尿円柱尿細管ネフロン排出排出器官泌尿器膀胱結石遊走腎

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

栄養・生化学辞典の解説

腎臓

 尿を生産し排泄する器官.エリトロポイエチンなどのホルモンを生産したり,血圧調節機能などももつ.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典 第2版の解説

じんぞう【腎臓 kidney】

腎臓は脊椎動物に共通する排出器官で,老廃物,おもに窒素代謝産物の体外への放出がその主要な働きであるが,体液の浸透圧調節のための水分の排出,体液中の余剰成分の排出,体液を一定のpHに保つためアルカリ性または酸性物質の排出,有害あるいは不要物質の排出などの機能ももっており,これらの諸作用は互いに関連し合っている。 腎臓は腎管nephridiumに由来したものと考えられ,発生上の順序や位置から前腎,中腎および後腎に分けられる(図1)。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

じんぞう【腎臓】

脊椎動物の泌尿器系臓器の一。左右一対あり、ヒトではソラマメ形。腎単位と呼ばれる機能上の単位が約二百万個ある。体内に生じた不要物質を尿として体外に排出し、体液の組成や量を一定に保つ。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

腎臓
じんぞう

泌尿器系の器官で、血液の一種の濾過(ろか)器の機能を果たす。腎臓は、腹腔(ふくくう)の後上部壁で脊柱(せきちゅう)の両側に位置する。左右1対の腎臓は、ともにその前面だけが後腹壁を覆う壁側腹膜によって覆われているため、腹腔外部に存在する腹膜後器官とされる。[嶋井和世]

ヒトにおける位置と形態

両腎ともにソラマメに似た形状で、くぼみのある部分が内側を向いている。平均の大きさは長さ10センチメートル、幅5センチメートル、厚さ3センチメートルで、重量は100グラムほどである。女性に比べると、男性がやや大きい。後腹壁における位置は左腎臓が第11胸椎(きょうつい)から第3腰椎にわたる高さにあり、右腎臓はそれより半椎体か1椎体分下がる。両腎の長軸はその延長線が上方で交差する。つまり、長軸は下方でやや開いた形となる。色調はやや暗紅色を呈し、外形では上・下端、前・後面、内・外側縁を区別できる。腎臓は上端に付着している副腎(腎上体)とともに脂肪組織に包まれており、これを脂肪被膜とよぶ。脂肪被膜は年齢とともに厚くなる傾向があるが老人になると減少する。腎臓の表面は直接、線維性の被膜で覆われ、これを線維被膜とよぶ。正常な腎臓ではこの被膜は容易にはがすことができるが、炎症のあとなどでは癒着のため、はがすことができなくなる。腎臓の内側縁の中央にあるくぼみは腎門といい、腎臓への動・静脈、リンパ管、神経、尿管が出入する。腎臓と周囲臓器との位置的関係をみると、右腎臓では前面に肝臓と、下方の一部に結腸が接し、内側は十二指腸が接触している。左腎臓の場合は、前面上部に脾臓(ひぞう)、一部は胃底に接し、下方では空腸、下行結腸などが接している。
 腎臓を外側縁から腎門に向かって縦断してみると、腎門の内部に広い腔があり、この腔は尿管に続いている。この腔所が腎盤(腎盂(じんう))とよばれる部分で、尿を導く部屋である。腎盤を取り囲むようにして腎臓実質がある。実質の割面では外層にあたる皮質と内層にあたる髄質とが区別できる。皮質の割面は暗赤褐色で、顆粒(かりゅう)状にざらざらしている。髄質には、先端を腎盤に向けた7~10個ほどの腎錐体(すいたい)が放射状に配列している。すなわち、錐体の底面は腎表面の方向に向いていることになる。腎錐体の突出部は腎乳頭とよび、100~700個くらいの腎乳頭口が開口している。腎乳頭が突出している腔はとくに腎杯(じんぱい)とよぶ。腎杯は腎乳頭を杯(さかずき)形に囲んでいるが、1~2個の乳頭が開く腔を小腎杯とよび、2~4個の小腎杯が集まって大腎杯となる。大腎杯は合流して腎盤に開いている。腎盤は尿管に移行する。
 腎皮質内には尿を産生する腎小体が集合している。腎皮質が肉眼的にも顆粒状で赤褐色にみえるのはこの腎小体のためである。腎小体の大きさは直径200マイクロメートルほどで、毛細血管網を主体とした塊であるが、糸球体とこれを包む二重の袋状の糸球体嚢(のう)(ボーマン嚢、ボウマン嚢)とからなる。なお、1個の腎臓には100万~300万個の腎小体があるといわれる。糸球体は複雑に分岐した毛細血管網の塊で、この塊を包むのが糸球体嚢である。この嚢は内葉と外葉とによって内腔をつくっている二重膜の嚢である。この糸球体において毛細血管内の血液は濾過されるが、その後、濾過された原尿は糸球体嚢の狭い腔にためられ、糸球体嚢の輸入管口・輸出管口(糸球体嚢内で糸球体を形成するための輸入細動脈・輸出細動脈の出入口)のある血管極とは反対側に存在する尿細管極の尿細管の入口に流れる。この部分の尿細管は尿が流れ出る最初の細管で、腎小体の近くで迂曲(うきょく)して走るので、近位曲尿細管(あるいは近位迂曲管)の名がある。近位曲尿細管は皮質内を迂曲して走りながら髄質に下り、髄質に入ると急に細くなって下行脚(ヘンレの下行脚。19世紀のドイツの解剖学者F. G. J. Henleにちなむ)となる。下行脚は髄質中でU字形に反転してヘンレ係蹄(けいてい)(わな)をつくり、上行脚(ヘンレの上行脚)となってふたたび皮質に向かう。上行脚は皮質内でふたたび太くなり、屈曲走行する。この部分を遠位曲尿細管(あるいは遠位迂曲管)とよび、近位曲尿細管の部分に介在して走っている。遠位曲尿細管はふたたび髄質に向かって走り、皮質、髄質の境あたりで集合管となる。集合管は互いに結合して太くなり(径30~50マイクロメートル)、髄質内側部に入ってさらに太い乳頭管(径200~300マイクロメートル)となり、腎乳頭に至り、腎乳頭尖端(せんたん)の乳頭孔に開口する。腎小体とそれから出る1本の尿細管のことをネフロン(腎単位)とよぶ。1本の集合管には多数のネフロンが連なることになる。[嶋井和世]

腎臓と動・静脈

腎臓には、腹大動脈から左右両側に直角に分岐する腎動脈(左・右腎動脈)が腎門を経て腎臓内に進入する。右腎動脈が左腎動脈よりやや長い。腎動脈は腎臓内に入ると腎門で数枝に分かれ、葉間動脈となり、腎乳頭の間を走って皮質に向かう。葉間動脈は皮質と髄質との境でさらに小葉間動脈となり、腎表層方向に向かう。この走行の間に枝が出て輸入細動脈(輸入管)として腎小体に入る。この血管が糸球体を形成する。糸球体は輸出細動脈(輸出管)を出し、これはふたたび毛細血管となって皮質内の尿細管を取り囲み、ついで小葉間静脈に集まり、さらに弓状静脈から葉間静脈に入る。葉間静脈は合流して腎静脈となる。
 腎臓の動脈の特徴は終動脈であるとされる。つまり、腎臓に入って数本に分岐したあとの動脈は、それぞれの分岐枝の間に吻合(ふんごう)をもたないため、各分岐動脈枝の分布区域は限定されることになる。この動脈枝を区(域)動脈とよび、区(域)動脈の分布する区域を腎区域とよぶ。解剖学上では上区、上前区、下前区、下区、後区などに区別しているが、一つの区(域)動脈に閉塞(へいそく)が生じると、その動脈の分布区域は組織壊死(えし)に陥る。
 腎臓への神経は腹大動脈や腎動脈周囲の神経叢(そう)(腎神経叢)からの神経線維が交感性線維として分布するが、迷走神経から由来する副交感神経も分布する。さらに、腎臓には知覚神経も分布している。
 腎臓の形態の異常のうち、もっとも発生頻度が高いのが馬蹄(ばてい)腎である。これは、左右の腎臓が下端で融合し、馬蹄形を呈するもので、腎実質がつながっている場合と線維性組織のみでつながっている場合とがある。そのほか、左右いずれかの腎臓が先天的に欠損している単腎症、腎臓全体が発育不良の発育不全腎、あるいは骨盤部や胸部に位置の変位をおこした骨盤腎、胸部腎などの位置異常もある。[嶋井和世]

排泄器官としての腎臓

体内の不要な不揮発性・水溶性の代謝産物または有害物を体外に排除する働きを排泄(はいせつ)というが、腎臓はもっとも重要な排泄器である。腎臓が果たす尿の排泄によって、(1)血液中の不要産物・有害物の除去、(2)血液の浸透圧調節、(3)細胞外液量調節、(4)血液のpH調節、(5)血漿(けっしょう)組成の調節、などが可能となる。また、腎臓からは数種類のホルモンが分泌され、腎臓は内分泌器官としての働きももっている。このようにみると、腎臓は、血液の性状を一定に保ち、ひいては身体の内部環境としての体液の恒常性を維持している器官といえる。腎臓は汚物処理場に例えることもできる。汚物処理場は、われわれの日常生活において生じるさまざまな汚物や塵芥(じんかい)を下水道などによって集め、焼却したり化学的処理を施してそれらを無害な形に変えているが、腎臓も、血液によって運ばれてきたさまざまな老廃物を取り出して尿として体外に捨てる(処理する)機能をもっている。汚物処理場がなければ健康的な生活を営むことができなくなると同様に、腎臓が正常に機能しないと血液中に老廃物がたまり、体液の恒常性を維持することができなくなってしまう。このような状態を尿毒症とよび、重症の場合は死に至る。また近年は塵芥をただ焼却処理するだけではなく、そのなかから再利用できるものを選別して省エネルギー・省資源の一助とすることが検討・実施されているが、腎臓はこの点では現代の汚物処理場よりもはるかに効果的に働いている。すなわち、血液からいったん取り出した物質をそのまま尿として体外に捨ててしまうのではなく、そのなかから利用できるものを再吸収して血液中に戻すという仕事も行っているのである。[真島英信]

尿生成の過程

腎臓における尿生成の最初の段階は腎小体において行われる。ボーマン嚢の内部において輸入細動脈は毛細血管となって糸球体を形成するが、ここでは血管壁に直径50~100ナノメートルの小孔が多数認められる。これらの小孔を通して血漿のうちタンパク質を除いた成分が濾過されて糸球体からボーマン嚢に出て糸球体濾液(原尿)となる。こうした腎小体における濾過は血液中の分子の大小、および相対的圧力の関係だけに支配される現象であると考えられている。したがって、タンパク質でも分子量の小さい卵白アルブミン(分子量4万)やヘモグロビン(分子量6万8000)は濾過されて出るし、ときにはアルブミンのような大きな分子がそのまま濾過されることもありうると考えられる。実際に健康な人でも疲労すると尿中にアルブミンが検出されることがある。ただし分子の大きい物質ほど濾過速度は遅くなる。
 腎臓に広く分布する糸球体から1分間に濾過されて尿細管に出る濾液の量を「糸球体濾過量」といい、腎臓の機能を表す一つの指標となっている。糸球体濾過量の値は1分間に男子で110ミリリットル、女子で100ミリリットル程度である。腎小体における濾過の決定要因としての相対的圧力に関与するのは、血圧、ボーマン嚢の内圧、および血漿の膠質(こうしつ)浸透圧である。なお、ここでいう血圧とは輸入細動脈の血圧と輸出細動脈の血圧との差であり、通常は約70ミリメートル水銀柱である。また、ボーマン嚢の内圧は条件によりいろいろに変化するが、平均約20ミリメートル水銀柱、血漿の膠質浸透圧は約20ミリメートル水銀柱である。濾過の原動力となる濾過圧は、血圧からボーマン嚢の内圧および膠質浸透圧を差し引いた値として求めることができる。したがって、濾過圧は通常70-(20+20)、すなわち30ミリメートル水銀柱程度となる。なお、糸球体における濾過においては、次のような現象が認められる。(1)糸球体毛細血管の血圧または血流量が増加すれば、糸球体濾過量は増加する。(2)糸球体の血圧は輸入細動脈の収縮によって低下し、輸出細動脈の収縮によって上昇する。(3)輸入細動脈の平滑筋は交感神経刺激により、あるいは大量のアドレナリンによって収縮し、カフェインなどによって拡張するが、拡張すると糸球体血圧は上昇し、糸球体の濾過量が増すので尿量は増加する。(4)輸出細動脈はレニン、ヒスタミン、少量のアドレナリンによって収縮するので、この場合も糸球体血圧が上昇し、尿量は増加する。
 腎臓の血流量は皮膚温との関係が深い。すなわち、寒冷のために皮膚温が低下すると、体温調節反射によって皮膚血管が収縮し、発汗が抑制されるが、このとき代償的に腎臓の血管が拡張して尿量が増す。[真島英信]

再吸収の仕組み

腎小体において濾過される糸球体濾液は1日に約160リットルにも達する。この糸球体濾液の成分は血漿からタンパク質のみを除いたものに等しく、その中には各種のイオン、ブドウ糖、アミノ酸など利用価値のあるものも多量に含まれているため、これをそのまま尿として排泄してしまったのでは非常な浪費となる。さらに毎日160リットルもの尿を排泄するとしたならば、それに等しい量の水を飲まなくてはならず、1日が水を飲むこととトイレに通うことだけで終わってしまうことになる。このようなむだを防ぐために、糸球体濾液がボーマン嚢に続く尿細管・集合管を流れ下る間に、ある物質は再吸収され、またある物質は血液から分泌されて最終的には尿となって排泄される。さらに、尿細管・集合管の周囲を糸球体からの輸出細動脈がふたたび毛細血管となって取り囲むため、尿細管・集合管との間で物質の再吸収・分泌が行われる。近位曲尿細管ではナトリウム、カリウムなどの電解質、ブドウ糖、フルクトース、アミノ酸、アスコルビン酸、尿素などが再吸収され、これに伴って水の大部分が受動的に再吸収される。一方、パラアミノ馬尿酸、ペニシリンなどの異物やクレアチニンなどは分泌される。こうした尿細管における再吸収・分泌は、単なる濃度勾配(こうばい)にしたがって物質が移動する受動的なものばかりではなく、尿細管の細胞が積極的にエネルギーを消費して濃度勾配に逆らって特定の物質を移動させる場合も多い。後者のような物質の移動を能動輸送という。たとえばヘンレ係蹄の太い上行脚では塩素が能動輸送によって再吸収される。また遠位曲尿細管ではナトリウム、重炭酸イオン、および水が再吸収され、カリウム、水素、アンモニアなどが分泌される。
 腎動脈から腎臓に流入する血液量は1分間に1.2~1.3リットルで、心臓から1分間に拍出される血液量の約25%に相当する。このうち糸球体・尿細管を含めて腎臓において濾過に関与する血液量を「有効腎血流量」という。有効腎血流量は男子では1分間に約1リットル、女子では約0.8リットルである。この血流量からまったく濾過されない赤血球の占める体積を除いた値(すなわち血漿の容積)を求めたものを「腎血漿流量」とよぶが、これは腎臓の働きを知る一つの指標として用いられる。また、糸球体濾過量と腎血漿流量との比は濾過率とよばれ、通常は約0.2である。すなわち糸球体を流れる血漿のうち約20%が濾過されて尿細管に出ることになる。[真島英信]

水・ナトリウム・ブドウ糖の再吸収

尿の大部分は水であるから、尿量は水の排泄量とみなすこともできる。糸球体濾過量が1日約160リットルに及ぶことはすでに述べたが、これに対して1日の尿量は約1.5リットルにすぎない。このことから、濾過された水の99%以上は再吸収されるわけであり、尿はそれだけ濃縮されていることになる。ヒトでは1日に最低500ミリリットルの尿で体液の恒常性を維持することができる。このときの尿は高度に濃縮されていて、その浸透圧は血漿の約5倍もある。また、尿量の最大限値は約23リットルであり、この場合の尿は、浸透圧が血漿の約10分の1という希薄な尿として排泄されるが、溶質の量は変化しない。すなわち、腎臓は溶質の排泄量を変えることなく、水の排泄量を大幅に変化させる能力をもっているわけである。糸球体から濾過された糸球体濾液の水分のうち、約75%は近位曲尿細管で再吸収され、また、5%はヘンレ係蹄に存在する対向流増幅機序という独得の仕組みによって生じる濃度勾配にしたがって再吸収される。さらに遠位曲尿細管で15%、集合管で約4%以上の水が再吸収され、合計すると結局99%以上が再吸収されることとなる。尿細管壁はヘンレ係蹄上行脚を除いてつねに水をよく透過するが、集合管壁の水に対する透過性は、下垂体後葉から分泌される抗利尿ホルモンの影響によって変化を受ける。抗利尿ホルモンが分泌されると、水はナトリウムの移動に伴って集合管壁から再吸収され、尿量は減少する。逆に、たとえば多量の水を飲んだときには抗利尿ホルモンの分泌が抑制されるため、集合管壁の水透過性が低下して水の再吸収が減少する。その結果、希薄な尿が多量に排泄されることになる。なお、下垂体の腫瘍(しゅよう)などによって抗利尿ホルモンの分泌が障害されると、希薄な尿が異常に増加し、1日の尿量は8~12リットルに及ぶ。さらに完全な抗利尿ホルモン欠乏の場合では、尿量は1日に23リットルにも達することがある(尿崩症)。
 ナトリウムは尿細管および集合管の全域にわたって受動的あるいは能動的に再吸収されるため、糸球体濾液中のナトリウムの96~99%は回収される。全再吸収量の約85%は近位曲尿細管で行われ、残りはそれ以外で再吸収される。つまり、1日のナトリウム排泄量は結局1日のナトリウム摂取量とほぼ等しくなるように調節されていることになる。ナトリウムの大部分は塩素を伴って再吸収されるが、一部は水素やカリウムと交換輸送される。副腎皮質から分泌される電解質コルチコイド(アルドステロンなど)や糖質コルチコイドは、ナトリウムの交換輸送および塩素を伴う再吸収を促進するが、その作用機序にはまだ不明な点が多い。体液(細胞外液)の浸透圧は水の量とナトリウムの量との相対的な関係によって維持されている。腎臓はこの水とナトリウムとの排泄量を調節することによって細胞外液の浸透圧を一定に保つように働いている。さらに腎臓のこのような働きを調節しているのが、すでに述べたように、水に関しては抗利尿ホルモン、ナトリウムに関してはアルドステロンなどである。たとえば、いま細胞外液の浸透圧が上昇したとすると、下垂体後葉が刺激されて抗利尿ホルモンの分泌が増加する。その結果、水の再吸収が増加し、尿量が減少して浸透圧の上昇を防ぐ。同時に渇きを催して水を摂取する飲行動に駆り立てられることになる。一方、尿細管のナトリウム排泄機能が障害されるとナトリウムが体内に貯留し、それに伴って水も貯留する結果、細胞外液、とくに間質液量が増して体重増加を伴う全身的浮腫(ふしゅ)を生じる。
 ブドウ糖は近位曲尿細管においてほぼ完全に再吸収される。その再吸収の機序は、小腸におけるブドウ糖の吸収機序によく似た能動輸送である。ただし、その再吸収の能力には限界があり、血液中のブドウ糖濃度がある限度以上にまで上昇して濾過されるブドウ糖が多量になると、尿細管において再吸収しきれなくなり、尿中にブドウ糖が排泄されるようになる。これが糖尿である。糖尿を生じるようになる血液中のブドウ糖濃度は、血液1デシリットル当り200~250ミリグラム以上であり、これは正常値の2~2.5倍である。糖尿は糖尿病患者に一般に認められるが、健康者でも糖質を多量に摂取した直後には尿中にブドウ糖が検出されることもある。[真島英信]

腎臓と体液のpH調節

腎臓は体液のpHの調節にも関与している。血液のpHは重炭酸イオンHCO3-の濃度と血液中の二酸化炭素CO2の濃度との比によって決まる。いま、もし水素イオンH+が増すとすると重炭酸イオンは減少して二酸化炭素が増加する。その結果pHは低下するが、増加した二酸化炭素は肺から呼気として排出され、一方の水素イオンは尿細管から尿中へと排泄されていくので、結局血液のpHは一定に保たれることになる。また、腎臓は重炭酸イオンや不揮発性の酸性物質の排泄も調節して、血液のpHを一定に保つように働いている。このように血液のpHの変動は極力抑えられるような仕組みをもっているが、種々の原因によって血液のpHが酸性に、あるいはアルカリ性に変動してしまうことがある。血液のpHが酸性になった状態をアシドーシス、アルカリ性になった状態をアルカローシスとよぶが、これらの症状は、さらにその原因によって、呼吸性および代謝性に分類される。たとえば糖尿病のような代謝においては、腎臓の排泄機能を超えるほどの酸性物質が体内にたまってしまうことがあり、体液は酸性となる。このような状態を代謝性アシドーシスという。代謝性アシドーシスの場合は、腎臓が水素イオンの排泄を亢進(こうしん)させると同時にナトリウムや重炭酸イオンの再吸収を促進して、塩基の減少を極力防ぐ役割を果たす。さらにpHの低下によって呼吸中枢が刺激されて肺における換気が促進され、多量の二酸化炭素を呼び出してpHを元に戻すように働くこととなる。逆に呼吸困難などのために肺における換気が十分に行えなくなると、血液中に二酸化炭素が貯留して体液は酸性となる。この状態が呼吸性アシドーシスである。この場合は、腎臓において酸分泌と重炭酸イオン再吸収の速度が増してpHを是正するように働くわけである。同様にして代謝性アルカローシスの場合は換気の抑制が、呼吸性アルカローシスの場合は腎臓における酸分泌と重炭酸イオン再吸収が抑制される。このように肺と腎臓は共同して血液のpHを一定に保つように働いている。[真島英信]

腎不全と利尿

これまで述べたように、腎臓は体内に生じた老廃物を排除するのみならず、血液、ひいては細胞内液をも含めた全体液の浸透圧、pHを一定に保つように働いている器官である。腎臓の排泄機能が生体の要求に十分応じられなくなった状態を腎不全といい、種々の重篤な症状を呈するようになる。腎不全の場合は尿量が減少するが、逆に尿量が増加する場合を利尿という。利尿の原因として次の三つがあげられる。
(1)抗利尿ホルモンの分泌抑制 多量の水を飲むと尿量が増加する。この機序は、全血液量の増加(血圧上昇)と血液浸透圧の低下によって直接に糸球体濾過量が増加することも考えられるが、それよりも血圧上昇や浸透圧低下に応じて抗利尿ホルモンの分泌が抑制され、水の再吸収が減少するためであると考えられる。この場合、尿の浸透圧は低くなる。その理由は、尿細管における電解質の再吸収が抑制されないためである。
(2)浸透圧的利尿 マンニット(マンニトール)のように浸透圧が大きく、しかも再吸収されにくい物質を血中に入れると、近位曲尿細管でこの物質は再吸収されないため、水の受動的再吸収が妨げられ、その結果尿量が増す。食塩、ブドウ糖などでも大量に与えればいずれも同様の機序によって利尿をきたす。糖尿病のときに尿量が増すのも、尿中へブドウ糖が多量に濾過されて出るための浸透圧利尿にほかならない。
(3)利尿剤 水銀利尿剤は、尿細管細胞による能動的な電解質の再吸収機能を抑制することによって尿量の増大をきたすと考えられる。この場合尿は酸性となり、血液中の塩素は減少してアルカローシスに傾く。カフェインなどのキサンチン誘導体は主として腎血管の拡張、腎血流量の増大によって糸球体濾過量を増加させる。また、ジギタリスなどの強心剤はその強心作用によって心臓からの拍出量の増大、血圧の上昇によって糸球体濾過量を増加させ利尿をきたす。[真島英信]

内分泌器官としての働き

腎臓は内分泌器官としての働きももっている。糸球体の輸入細動脈の特別な部位には血圧に反応する部分があり、腎臓の血圧または血流量が減少すると、その部分の糸球体旁(ぼう)細胞(輸入細動脈壁の中膜の平滑筋細胞が特殊化したもの)が刺激されてレニンとよばれる一種のホルモンが分泌される。また、尿細管のナトリウム濃度が低下した場合には、糸球体旁細胞に接する緻密斑(ちみつはん)の細胞(遠位曲尿細管は、血管極の近くでかならず1回糸球体に接するが、この部分の尿細管上皮細胞をいう)からも遊離される。レニンは血漿タンパク質中のアンギオテンシノーゲンを活性化してアンギオテンシンとするが、アンギオテンシンはさらに血液中の酵素の作用によってアンギオテンシンとなる。アンギオテンシンは強い血管収縮作用をもっているため、血圧上昇をきたすと同時に、副腎皮質に作用してアルドステロンおよび糖質コルチコイドの分泌を促進する。アンギオテンシンの分解産物であるアンギオテンシンは血管収縮作用は弱いが、アルドステロン分泌促進作用はと同程度に強い。
 交感神経刺激またはカテコールアミンはレニン分泌を促進し、アンギオテンシンおよび抗利尿ホルモンはレニン分泌を抑制する。レニンは腎臓の血圧が低下したときに分泌され、その結果として血圧を上昇させるのであるから、このような昇圧物質は腎血流の自己調節的意味を有すると考えられる。しかし、動脈硬化、血栓などによって腎動脈に狭窄(きょうさく)を生じた場合も、狭窄部より下流にある腎臓の血圧が低下するためにレニンが分泌される。レニンはアンギオテンシンを介して全身の血管を収縮させ、血圧を上昇させるが、腎動脈はすでに機械的に狭窄されているので腎臓の血圧はほとんど上昇しない。このような場合はレニンの分泌増加が持続する結果、慢性的な高血圧症(腎性高血圧)となる。なお、腎臓からはレニン以外の組成の不明な物質が生成され、末梢(まっしょう)血管を収縮させている。また、腎臓では他の器官でつくられた昇圧物質の破壊が行われるので、腎臓を摘出すると血圧の上昇がおこる。
 腎臓への酸素供給量が低下したり、血液中のヘモグロビン濃度が減少すると、エリスロゲニンとよばれるホルモンが腎臓から分泌される。このホルモンの分泌細胞はまだよくわかっていないが糸球体細胞であろうと考えられている。エリスロゲニンは血液中の基質に作用してプロエリスロポイエチンを合成し、さらに肝臓においてエリスロポイエチンとなる。エリスロポイエチンは赤血球の新生を促進する作用をもっている。すなわち、骨髄の幹細胞の分化を促進し、赤血球前駆細胞を増加させるとともに、赤芽球の細胞分裂を促進し、網状赤血球の血液中への放出も早める。また細胞当りのヘモグロビン合成量を高める作用もある。[真島英信]

腎臓と病気

前述の腎不全をはじめ、腎臓の片側にみられる腎盂炎、腎結石、水腎症、腎結核、腎腫瘍(しゅよう)など、また両側にみられる腎炎、ネフローゼ、腎硬化症などのほか、腎損傷や遊走腎などがある。[真島英信]

動物の腎臓

腎臓は脊椎(せきつい)動物にみられる泌尿(排出)器官で、中胚葉(ちゅうはいよう)の腎節に由来する。系統発生的にも個体発生的にも、前腎、中腎、後腎の三つに分けられる。前腎はすべての脊椎動物の胚期に現れ、前腎小管とよばれる腎管と、その近くの糸球体とからなる。前腎の形で終生働くのは円口類(ヤツメウナギ)だけで、魚類や両生類では幼生期にのみ働く。他の脊椎動物では、前腎は痕跡(こんせき)的にしか形成されず、やがて退化する。前腎に次いで中腎が現れる。魚類、両生類では中腎が終生腎として働く。体節状に配列した中腎小管は、体腔(たいこう)に開く部分から枝を出して糸球体を包み、ボーマン嚢(のう)をつくる。爬虫(はちゅう)類、鳥類、哺乳(ほにゅう)類では、中腎は胚期に一時的に出現するがやがて退化し、後腎が終生腎として働く。後腎の集合管の周囲には間葉性細胞が集まって尿細管をつくり、それぞれが糸球体と結合する。腎臓の糸球体により濾過(ろか)された状態の尿は原尿とよばれるが、続いて尿細管の上皮細胞により必要成分が再吸収されて尿となる。[小林靖夫]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の腎臓の言及

【内分泌腺】より

…そのほか胎盤からは種々の下垂体ホルモンや性ホルモンが分泌される。(12)腎臓 旁糸球体細胞はレニンという酵素を分泌する。これが血中のアンギオテンシノゲンに作用して,アンギオテンシンIを生ずる。…

【排出】より

…この過程が排出である。脊椎動物には排出器官として発達した腎臓があるが,無脊椎動物にも系統群によってそれぞれ特有の排出器官があり,排出器官では,原理的にはろ過,再吸収,分泌の三つの過程を経て尿が作られる。脊椎動物の腎臓を例にとると,まず第1段階として腎小体(マルピーギ小体)で,小動脈よりなる糸球体からそれを包むボーマン囊へ体液がろ過されるが,これは小動脈内血圧と外側の圧の差によって起こる限外ろ過であって,血球と大部分のタンパク質を除く血液成分がこし出される。…

【ヒスイ(翡翠)】より

玉(ぎょく)玉(たま)【町田 章】
[語源,習俗]
 ヒスイをあらわす西欧語jadeはもとejadeと称したが,語頭のeが冠詞の一部と誤解されて脱落した。ejadeはスペイン語のpiedra de ijada(〈横腹の石〉の意)から由来しており,この石,つまりヒスイは腎臓の痛みを治癒させるといわれていた。石とは関係のないijada(横腹)からjadeの語は生じたわけである。…

※「腎臓」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

腎臓の関連キーワード原索動物後腎腎管中腎排卵副腎触覚器官視覚器官排出器官人畜共通伝染病

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

腎臓の関連情報