日本大百科全書(ニッポニカ)「X線」の解説
X線
えっくすせん
X ray
放射のメカニズムや性質が通常の電磁波とは異なる、波長の短い電磁波のこと。X線の波長は通常、数百オングストローム(1オングストロームは1億分の1センチメートル)から0.1オングストロームで、紫外線のそれよりは短くγ(ガンマ)線のそれよりは長い。これを、光子(こうし)のエネルギーという見方からすれば、そのエネルギーは1000電子ボルトから数万電子ボルトの範囲である。
X線は1895年ドイツのウュルツブルク大学教授、レントゲンによって偶然発見された。彼は当時、J・J・トムソンなどが中心となって研究していた真空放電、陰極線の実験中にこの発見に至った。レントゲンは1895年11月、真空にしたガラス容器に電極を封入し、これに高電圧をかけた(レントゲン線とよんでいる。
)。彼は、放電管全体を黒い紙で覆ってみても、目に見えない何かが放電管から放出され、近くに置いた蛍光板を光らせることを発見した。これは、陰極線とは違うものであることはすぐわかった。陰極線は空気中に出たとたんに、数センチメートルも走らないうちに、空気によって吸収されてしまうことが知られていたからである。ところが、この未知のものは、放電管から数メートルも離れた所に到達し、しかも、紙や木材、人間の手なども透過してしまうという不思議な性質をもっていた。レントゲンはこれをX線と名づけたが、ドイツでは[大槻義彦]
X線の発生
X線は、当初レントゲンが行ったように、低圧中の気体放電によって、すなわち、電子線を金属ターゲットに当てることによって発生する。この装置をガスイオンX線管という。 に代表的なガスイオンX線管を示す。Bの電極を正、Eの電極を負にすると、DからCに向かって高速の電子が飛び出す。これが金属ターゲットCに当たると、ここからX線が放出される。
これをすこし改良し、陰極Dを加熱し、電子が飛び出しやすくしたものに熱電子X線管、別名クーリッジ管があり、これは広く利用されている。医療用、工業用のX線はほとんどこの型のX線管を用いて発生させている。そのほか、X線は各種のイオン線を物質に当てることによっても得られるし、高温のプラズマ気体などからも放出される。電子線や陽電子線を固体に当てないで、磁場や電場によって急に曲げても強力なX線が得られる。たとえば、茨城県つくば市大穂(おおほ)の高エネルギー物理学研究所(現、高エネルギー加速器研究機構)内に1982年(昭和57)に完成したフォトンファクトリー(放射光実験施設)では、加速器で加速した電子を円形に走らせることによって強力なX線が得られる。この種のX線はSOR(ソール)光という。
[大槻義彦]
X線の性質
発見当初からわかっていたX線のおもな性質は、(1)蛍光物質を光らせる、(2)写真作用をもつ、(3)光のような直進性がある、(4)空気を電離する、(5)物質をよく透過する、(6)透過のよい硬いX線と透過の悪い軟らかいX線がある、などであった。
X線はエネルギーの大きい光子からできており、これが原子に当たると、光電効果によって、原子内電子をはじき飛ばし、原子をイオン化する。これは(1)(2)(4)の性質と対応する。硬いX線はエネルギーの高い光子のことで、これは物質をよく透過し、反対に軟らかいX線はエネルギーの低い光子からできており、これは物質によって吸収を多く受け、透過しにくい。物質での吸収されやすさを表すのが吸収係数であり、その波長依存性は
のようになっている。これによって、波長の長いほうが吸収されやすいことがわかる。なお、吸収係数にぎざぎざが現れている部分は、ちょうどイオン化エネルギーと合致するところで、ここだけが多く吸収を受けていることを表す。さらに、吸収係数は物質の密度に比例し、密度の大きい物質ほどX線は透過しにくい。たとえばX線を人間の手に当てると、骨の部分だけは他の組織より極端に密度が高く、この部分は透過しないので、影が写る。[大槻義彦]
連続X線と固有X線
クーリッジ管から放出されるX線のスペクトル、すなわち波長の関数としての強度の変化をとってみると、連続X線である。もう一つは、波長がある値λ1、λ2だけであるような強いX線である。すなわち不連続なX線である。
に示すようになる。全体としては、左で切れているなだらかな山になっているが、数箇所で急に立ち上がっている。これは、X線が、異なる二つの発生機構によって放出されていることを暗示する。一つは、ある波長λcより大きい波長ならば、連続的にどんな波長のX線でも放出しており、この意味で放出X線は連続X線発生のメカニズムは、まだよくわかっていない部分も多い。大まかにいえば、物質に高速の電子ビームが当たると、これから、さらに大量の電子線を二次的に放出する。この電子は、そばにいる原子によって急に曲げられ、曲げられるときにX線を放出する(
)。したがって、このとき放出されるX線の波長はどんなものでも可能である。そうはいっても、もともとの電子がもっていたエネルギー以上のX線を放出することは、エネルギー保存則からいって不可能である。これによって限界の波長λcが決まる。一方、固有X線は量子力学的効果である。 のように、電子ビームによって原子内の電子が電離されると、そのすきまに周りの電子が遷移する。このとき放出されるエネルギーは、もともとの原子内の電子のエネルギー準位によって決まってくる。したがって、放出されるX線のエネルギーは物質の種類によって異なるものとなり、物質固有の振動数のX線が得られる。これは固有X線、または特性X線とよばれる。
[大槻義彦]
X線の利用
X線を利用して、物質の化学的、物性的組成を研究するのがX線分析法であり、蛍光X線分析、X線発光分析、X線吸収分析、光電子分光分析、X線回折法、電子線マイクロアナライザー(X線マイクロアナライザー)などがある。蛍光X線分析法は、X線を照射された試料が物質特有の蛍光を発することを利用して微量な元素を分析する。X線発光分析は蛍光分析と似ているが、広い範囲の波長分析を行って元素を解析する。X線吸収分析は試料にX線を吸収させ、その吸収係数の違いや吸収スペクトルの違いから、物質組成を分析する方法である。
20世紀末ごろに著しく発展したのは光電子分光分析と電子線マイクロアナライザーである。前者は物質にX線を照射したとき、物質からはじき飛ばされる光電子のエネルギーを分析する方法であり、固体表面の研究に大きな成果をあげている。一方、電子線マイクロアナライザーは試料表面に細い電子ビームを当て、これから放出される特性X線を分析するが、電子ビームを試料面で走査して二次元的な分析を行う。
X線の波長は1オングストローム程度で、結晶の原子間隔と同程度のため、X線が結晶に当たると、干渉効果が現れる。このX線の波動的性質を利用して、結晶構造、分子構造などを決定する方法がX線回折法である。
たとえば、波長λのX線が、
2dsinθ=mλ (m=0,1,2,……)
のとき、強度の強いX線のスポットが得られる。ここに、dは原子面間の距離で、mは整数である。この式をブラッグ条件とよぶ。
X線の波長、結晶の方位などを変化させ、X線のスポットの変化を調べてゆくと、結晶の構造、原子間距離などをきわめて正確に決定することができる。結晶が粉末状になっていると、X線のスポットはデバイ‐シェラー環とよばれるリング状のパターンとなり、結晶の原子間距離の決定などに利用される。
[大槻義彦]
X線と生物
X線の分析法や回折法は、生物資料の研究にも広く利用されている。放射線としてのX線は、生体に特有の放射線照射効果を与える。生物組織が放射線の作用を受けやすいことを「放射線感受性」という。一般的に、生物の細胞が激しく分裂している場合、その細胞の放射線感受性は高くなる。哺乳(ほにゅう)動物では、肝臓(かんぞう)、腎臓(じんぞう)、筋肉、脳、骨などは放射線感受性は低く、骨髄(こつずい)、卵巣(らんそう)、精巣、腸、皮膚では高い。
X線を含む放射線の強さを表す単位は複雑である。X線に関する単位は放射線の単位(とくにγ線の単位)と同じである。X線が物体に当たり、そのエネルギーが物体に吸収される度合いを表すのが吸収線量で、その単位はグレイ(Gy)とよばれる。1Gyは1キログラムの物体が1秒当り1ジュール(J)のエネルギーを吸収することを意味する。癌(がん)治療で人体が受ける標準の吸収線量は70~75Gyである。吸収線量を表記するのに線量当量という単位も用いられ、その単位はシーベルト(Sv)であるが、X線の場合Gyと同じものである。このほかにX線が放出される段階での放出量の大きさも問題になる。これが放射の強さで、これを放射能の強さともいう。この強さは1秒(s)当りの1個の原子核が崩壊する場合を基準にとり、これを1ベクレル(Bq)という。1Bqは1/sという単位となる。
[大槻義彦]
『大槻義彦著『放射線の話』(1980・日本放送出版協会)』▽『大槻義彦著『エックス線』(1982・大月書店)』▽『加藤誠軌著『X線で何がわかるか――X線発見の社会的衝撃』(1990・内田老鶴圃)』▽『多田順一郎著『わかりやすい放射線物理学』(1997・オーム社)』▽『早稲田嘉夫・松原英一郎著、堂山昌男・小川恵一・北田正弘監修『X線構造解析――原子の配列を決める』(1998・内田老鶴圃)』▽『加藤誠軌編著『X線分光分析』(1998・内田老鶴圃)』▽『波岡武・山下広順編『X線結像光学』(1999・培風館)』