コトバンクはYahoo!辞書と技術提携しています。

核酸 かくさん nucleic acid

翻訳|nucleic acid

8件 の用語解説(核酸の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

核酸
かくさん
nucleic acid

すべての生物の細胞内に存在し,蛋白質生合成および生物の遺伝現象に関与している重要な物質で,デオキシリボ核酸 DNAリボ核酸 RNAの2種がある。 DNAは細胞核の染色体に局在し,遺伝子の本体である。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

かく‐さん【核酸】

生物の細胞核中に多く含まれる、塩基燐酸(りんさん)からなる高分子物質。糖がデオキシリボースであるデオキシリボ核酸(DNA)と、リボースであるリボ核酸(RNA)とに大別される。

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

核酸【かくさん】

窒素塩基(プリン塩基およびピリミジン塩基),糖,リン酸からなるヌクレオチドが多数結合した高分子物質ウイルス〜高等生物の細胞に広く存在し,遺伝やタンパク質合成を支配する。
→関連項目ウイルスウイロイド塩基対ヌクレオシドヌクレオチドバクテリオファージプリオン

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

栄養・生化学辞典の解説

核酸

 リボヌクレオチドもしくはデオキシリボヌクレオチドがホスホジエステル結合ポリマーとなった物質で,DNAとRNAに大別される.DNAでは,構成するヌクレオチドがデオキシアデニル酸(A),デオキシグアニル酸(G),デオキシシチジル酸(C),デオキシチミジル酸(T)(チミジル酸)であり,2本のポリヌクレオチドの鎖が逆向きに一対となり,AはTと,GはCと対をなして水素結合を作り,全体として2本の鎖がよじれたような二重らせんとよばれる構造を作っている.RNAは構成するヌクレオチドが微量に存在するものを除いて,アデニル酸(A),グアニル酸(G),シチジル酸(C),ウリジル酸(U)であり,基本的に一本鎖であるが,部分的に AはUと,GはCと対をなして二本鎖を形成している.ミトコンドリアクロロプラストに存在する少量を除いて,DNAは核に局在し,遺伝情報担い手であり,RNAは,一部のウイルスでDNAと同じ働きをするものの,大部分は,メッセンジャーRNA (mRNA),リボソームRNA (rRNA),トランスファーRNA (tRNA)であり,DNAの情報をタンパク質に翻訳する過程で機能する.RNAは大部分が細胞質に存在.

出典|朝倉書店
Copyright (C) 2009 Asakura Publishing Co., Ltd. All rights reserved.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

食の医学館の解説

かくさん【核酸】

 イワシに含まれる栄養素の1つが核酸です。核酸は私たちの細胞の新陳代謝を活発にし、老化にともなう心臓や肝臓の機能低下を回復させる作用があります。
 細胞の増殖がさかんな時期には、核酸は体内で合成されますが、増殖が終わると合成されなくなり、食べものからの補給が重要になります。
 また核酸には、傷ついた遺伝子を修復する作用があると考えられています。
 アメリカの臨床報告においても、核酸は発がん物質放射性物質から細胞をまもるとともに、細胞修復に働くことが確認されています。
 核酸を多く含む食べものは、イワシのほかに、サケ・タラ・フグの白子、ノリ、ハマグリ、カキなどがあります。

出典|小学館
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。食品は薬品ではありません。病気にかかったら、かならず医師の診察を受けてください。

世界大百科事典 第2版の解説

かくさん【核酸 nucleic acid】

高等動植物の細胞から細菌やウイルスにいたるまで,生命現象の営まれる場所には必ず存在しているリン酸を含む酸性の高分子有機化合物。生物がその秩序の高い構造を再生産する自己増殖過程にはなくてはならない物質である。すなわち遺伝子の本体であり,また遺伝情報の発現の過程,例えば遺伝情報がタンパク質分子の合成として発現する過程でも重要な役割を果たす。最初ミーシャーF.Miescherにより1869年ころに細胞核()の成分として発見されたが,細胞核だけの成分ではなく細胞質にも含まれる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

かくさん【核酸】

塩基・糖・リン酸から成るヌクレオチドが長い鎖状に結合した高分子物質。糖の部分がデオキシリボースであるデオキシリボ核酸( DNA )とリボースであるリボ核酸( RNA )に大別され、生物の増殖をはじめとする生命活動の維持に重要な働きをする。ヌクレイン酸。

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

核酸
かくさん
nucleic acid

生物にとってもっとも重要な化学物質で、核酸塩基(プリンおよびピリミジン塩基)とペントース(五炭糖で、リボースまたはデオキシリボース)とリン酸からなる高分子物質。遺伝、生存、繁殖になくてはならない物質で、地球上の生物はもっとも簡単なウイルスから人間に至るまで、核酸を土台として生きている。[笠井献一]

研究の歴史

1869年にスイスのミーシャーJ. F. Miescher(1844―1895)は、細胞の核にどのような物質があるのかを知りたいと考え、核を多く含む材料として化膿(かのう)した傷口にたまる膿(うみ)を選び、当時まだ知られていなかった物質を取り出し、ヌクレインと名づけた。ヌクレが核を表す。これはリン酸を含む酸性の有機化合物で、その後にサケの精子、動物の胸腺(きょうせん)、酵母、そのほか多くの生物材料から発見され、核から発見された酸性物質ということから、1889年に核酸と名づけられた。のちになって核酸は核ばかりでなく細胞質中にも存在することが知られた。化学的研究が進むにつれて、デオキシリボ核酸(DNA)とリボ核酸(RNA)の二つのタイプがあることがわかった。あらゆる生物に核酸があることが知られてきたが、このものの重要性がはっきり認識されるようになったのは、1935年にアメリカのW・M・スタンリーが純粋のタバコモザイクウイルスを得るのに成功してからである。これはタバコの葉を侵す病原体であるが、純化されたウイルスは結晶として得られ、とても生物にはみえなかった。しかも化学分析によれば、糖とか脂質などの生体物質はまったく含まれておらず、タンパク質と核酸だけからなっていた。ところがこの結晶をタバコの葉に塗り付けるとウイルスが増殖し、タバコの葉はモザイク病になった。この実験からわかったことは、まるで生きていない単なる物質のようにみえるものでも、タンパク質と核酸さえもっていれば、自分の子孫をつくる(自己増殖)、いいかえると、自分と同じ生物をつくるために必要な情報を子孫に与えるというもっとも生物らしい行為ができるということである。
 次に、1944年アメリカの細菌学者O・T・エーブリーは、S型とよばれる肺炎双球菌からDNAを精製し、それをR型とよばれる肺炎双球菌に与えると、R型の子孫がS型になってしまうことを発見した。この形質転換現象はDNAを与えるだけでおこり、タンパク質は必要でなかった。すなわち、S型の親がその子孫もまたS型になるようにと子孫に与えていた情報(遺伝情報)は、DNAという物質中にあったのである。またDNAを化学的あるいは物理的な方法で傷つける(構造を変える)ことによって、人工的に突然変異をおこしうることも知られた。DNAこそ、1866年にG・J・メンデルが予測していた遺伝子の実体だった。さらに1953年にJ・D・ワトソンとF・H・C・クリックが、DNA分子は逆方向に走った2本の鎖が互いに巻き付いた二重螺旋(らせん)構造をしていることを発見した。1956年にはA・コーンバーグが、DNAを手本として、それと同じDNAをつくる酵素を発見した。こうして、遺伝情報がどのようにして子孫に分配されていくかについての分子レベルでの機構も、しだいに明らかになってきた。
 RNAの役割はDNA以上に長い間わからなかった。タバコモザイクウイルスなど一部のウイルスでは、RNAが遺伝子として働いているが、これらは全生物界からみれば、ほんの例外的存在にすぎない。遺伝子としてDNAをもつ細菌以上の生物でのRNAの役割はなんであろうか。1950年ころまでには、RNAは核の中ではなく細胞質にあり、とくにタンパク質が盛んにつくられている細胞に多いことが知られてきて、RNAはタンパク質合成に必要なものと推測された。1960年にフランスのF・ジャコブとJ・L・モノーがメッセンジャー(伝令)RNAの存在を予言し、やがてその実在が証明された。そしてタンパク質合成には、メッセンジャーRNAのほかに、転移RNA、リボゾームに含まれるRNAの3種類のRNAが不可欠であることが明らかになった。1961年にはM・W・ニーレンバーグが人工のメッセンジャーRNAを使って試験管内で簡単なタンパク質をつくらせることに成功した。これをきっかけとして遺伝暗号が解読され、またRNAは、DNAに記されている遺伝情報をタンパク質という形で実現するために、さまざまな働きをしていることがわかった。こうして地球上の生物においては、遺伝情報がDNA→RNA→タンパク質の順に伝えられてゆくという法則が広く認められるところとなった。なお、この法則は地球上の生物にとってもっとも基本的なことであり、セントラルドグマとよばれる。しかし、これが絶対的ではないこともやがて知られた。動物に感染するRNAウイルスの一部は、RNAを手本にしてDNAを合成する逆転写酵素をもつことが発見され、RNA→DNAという遺伝情報の流れもあることがわかった。
 1970年代後半から、核酸の構造を研究する技術が著しく進歩し、たくさんのタンパク質の遺伝子が解読されるようになった。また、一つの生物種のDNAの塩基配列を完全に解明しようというゲノム・プロジェクトが盛んに行われるようになり、ヒト、ショウジョウバエ、線虫などの多細胞生物はもとより、かなりの種類の微生物について完全なDNA構造が解明された。このことは、人類にとって病気の予防や治療などに大きく役だつ反面、個人のプライバシーへの影響なども危惧(きぐ)される事態をもたらしている。
 また人工的に核酸をつくる技術、それを大腸菌などの細菌の中へ入れて増殖させ、その人工遺伝子に基づいてタンパク質をつくらせる技術などが発展した。このようにして遺伝子を人工的につくりかえて、もととは違う特性をもつ生物をつくりだす途(みち)が開けた。このような技術を遺伝子操作あるいは遺伝子工学とよんでいる。[笠井献一]

所在

核酸にはDNAとRNAの二つの型があるが、ウイルス以外の全生物はその両方をもっている。DNAは動植物の細胞では核内の染色体に含まれている。細胞1個当りのDNAは、一つの種の生物については、どの細胞をとっても一定していて増減することがない。ただし、生殖細胞だけは減数分裂のため、ちょうど半量である。RNAは動植物および細菌を通じて細胞質に存在し、細胞の状態によって増減が著しい。ウイルスはDNAかRNAかのいずれか一方だけをもっている。[笠井献一]

構造

DNAとRNAの化学的構造はよく似ている。いずれもヌクレオチド(核酸塩基、ペントース、リン酸の各1分子が結合した物質)がリン酸ジエステル結合によって鎖状に重合したポリヌクレオチドである。小さな核酸である転移RNAで100個くらい、遺伝子であるDNAになると数百万個以上のヌクレオチドが重合している。DNAとRNAのもっとも大きな違いは、ヌクレオチドの構成単位の一つであるペントース(五炭糖)が、DNAではデオキシリボースであり、RNAではリボースであることである。また、いずれの核酸もおもな核酸塩基としてはプリン誘導体とピリミジン誘導体各2種類、計4種類を含むが、DNAではそれがアデニン(略号A)、グアニン(G)、チミン(T)、シトシン(C)であるのに対し、RNAではアデニン、グアニン、ウラシル(U)、シトシンであり、チミンのかわりにウラシルが含まれる点が異なる。なお、アデニンとグアニンはプリン誘導体、チミン、シトシン、ウラシルがピリミジン誘導体である。ペントースとリン酸でつくられた骨組みに、どのような順序でこれらの塩基が並ぶかによって、ほぼ無限の種類の核酸ができる。また、これらの塩基には重要な性質がある。アデニンとチミン、アデニンとウラシル、グアニンとシトシンという組合せは、塩基どうしの間で水素結合をつくりやすい。これは、アデニンとチミンあるいはウラシルとの間には2本、グアニンとシトシンとの間には3本の水素結合が、ちょうどうまくつくられるような構造関係にあるからである。このような関係を相補的、こうしてできる塩基の対(つい)を相補的塩基対とよんでおり、核酸が生命現象のなかでさまざまな役割を果たすために、なくてはならない性質である。
 DNAは方向が逆の2本のポリデオキシリボヌクレオチドが互いに巻き付き合った二重螺旋であるが、片方の鎖にある塩基はすべてもう1本の鎖の塩基と相補的塩基対をつくっている。すなわち、片方の鎖の塩基の並び方が決まれば、相手の鎖の塩基の並び方も必然的に決まってしまうのである。RNAでは分子中の塩基のすべてが対になっている例は少ないが、部分的に相補的塩基対をつくることは多く、転移RNAの独特な立体構造などを形成させる。また、DNAを鋳型としてメッセンジャーRNAが合成されるとき、あるいは転移RNAがタンパク質合成のためメッセンジャーRNAと接触するときにも、一時的に相補的塩基対がつくられることが重要である。[笠井献一]

機能

DNAとRNAの働きについて、それぞれ簡単に述べる。[笠井献一]
DNAの働き
遺伝子の実体はDNAであることがわかった。したがって、DNAには、新たに生み出される生物が親に似たものになるために必要な、もっと厳密にいえば、親とまったく同じ種の生物になるために必要な情報がすべて含まれていなければならない。DNAは一つの生物をつくるための設計図のようなものである。ただし、それは平らな紙に描かれたものではなく、たとえていえば、長いテープにA、G、T、Cという4種の符号を並べることによって記されているのである。コンピュータのプログラムは、0と1の二つの符号だけで、どんな複雑な仕事でも指示できるのであるから、遺伝子の符号が4種類というのはけっして少ない数ではない。遺伝が行われるということは、1個の母細胞が分裂して2個の娘(じょう)細胞ができるとき、母細胞のもっていた設計テープが2倍になって、平等に分配されることなのである。
 これが分子のレベルでどのように行われるかは、DNAの二重螺旋構造から明快に説明される。細胞が分裂するとき、母細胞のDNAは螺旋がほどけて、それぞれの鎖に対して新しく相補的な鎖が合成される。このことによって母細胞のものと寸分違わぬDNAが2組できて、娘細胞に平等に分配される。このような工程をDNAの複製という。もとの二重螺旋の片方ずつが娘細胞に譲られるので、とくに半保存的複製ともいう。この機構の解明には、日本人の岡崎令治(おかざきれいじ)(1930―1975)が大きく貢献をしている。
 さて、A、G、T、Cという4種の符号だけを使った設計テープで、どのようにして生物のような複雑なものを実現できるのであろうか。この設計テープには主としてタンパク質をつくるための情報が収められている。すなわち、タンパク質中のアミノ酸のつながり方が、DNAの塩基のつながり方を使って暗号化されているのである。三つの塩基のつながりで一つのアミノ酸が表されるので、三文字暗号とよばれる。三文字暗号を並べて書いた設計テープにより、膨大な種類のタンパク質(簡単な細菌ですら少なくとも数千種、人間ならば2万数千種類)がつくられる。それは、酵素、ホルモン、抗体、構造タンパク質、そのほか千差万別の役割を担っており、それらが秩序をもって働くことにより、生物は生まれ、成長し、活動し、子孫をつくるのである。
 タンパク質に含まれるアミノ酸は20種類であるから、遺伝暗号も20種あればよい。一方、4種の塩基で三文字暗号をつくるなら、43=64通りの暗号をつくれる。このうちの三つは句読点として使われ、残りの61が20種のアミノ酸に割り当てられている。三文字暗号はメッセンジャーRNAを使う実験から解読されたので、普通はメッセンジャーRNA上の塩基の並び方として表される。
 DNA上の遺伝暗号に間違いがおこると、タンパク質上のアミノ酸が間違ったものに変わってしまう可能性がある。これを突然変異というが、放射線や化学物質などの影響で、DNAの複製が正しく行われないときにおこる。そして一部に間違いのあるタンパク質が、本来の役割を果たせない場合には、その子孫は生存に不利が生じたり、遺伝病をもったりする。反対に、非常にまれではあるが、間違いのあるタンパク質が、もとのタンパク質よりも優れていることもありうる。このことの積み重ねで生物は進化してきたのである。[笠井献一]
RNAの働き
DNAの役割が遺伝情報の保存と伝達であるのに対し、RNAの役割はその実体化にある。すなわち、タンパク質の合成を推進するために働いている。ここでは3種類のRNA、すなわちメッセンジャーRNA(mRNA)、リボゾームRNA(rRNA)、転移RNA(tRNA)がたいせつである。メッセンジャーRNAとは、長大なDNAのなかで、いままさに合成しなければならないタンパク質に必要な情報だけを写しとったものである。これはDNAの複製と似たやり方で、二重螺旋の片方の鎖に相補的な(ただし、チミンはウラシルに置き換えられる)1本鎖RNAがつくられる。この工程を転写といい、高等な生物では核の中で行われる。次にメッセンジャーRNAは核から出て、細胞質にあるリボゾームという巨大な粒子のところへ行く。リボゾームは数十種のタンパク質と3種のRNA(リボゾームRNA)が集合したもので、タンパク質合成装置である。ここでメッセンジャーRNAの三文字暗号に従って、アミノ酸をつなげてゆく作業が行われる。これを翻訳とよぶ。アミノ酸自身は、自分を表す暗号を読むことはできない。そこで通訳の役割を果たすのが転移RNAである。転移RNAは遺伝暗号の種類に相当するくらいの種類があるが、それぞれが、決まったアミノ酸と決まった三文字暗号に対応するように専門化されている。分子量は2万ないし3万くらいの小さいものであるが、定められた1種類のアミノ酸を結合する部位と、メッセンジャーRNAに結合する部位とをもっている。後者はそのアミノ酸に対する三文字暗号にだけ結合するように、三つの相補的塩基が並んだ部分である。したがって、転移RNAは、定められたアミノ酸を結合しておき、メッセンジャーRNA上にそのアミノ酸に対する三文字暗号が現れたとき、タンパク質合成装置にそのアミノ酸を手渡すことができる。こうして定められた順番にアミノ酸がつなげられて、タンパク質が合成されるのである。[笠井献一]

遺伝子操作の概要

目的とするタンパク質の遺伝子DNAを入手するため、そのタンパク質をたくさんつくっている細胞から、メッセンジャーRNAを取り出し、逆転写酵素を使って相補的DNAをつくらせる。これを細菌に寄生する輪になったDNA(ベクターという)に組み込む。この操作はいわば切り張り細工で、ベクターの一部を切断し(制限酵素という特殊な酵素を使う)、その切れ目に目的のDNAを挿入してから、リガーゼという酵素でつなぎ合わせ、ふたたび輪にする。この組換えベクターを細菌に寄生させると、組み込まれたDNAが指令を発し、メッセンジャーRNAがつくられ、さらに目的のタンパク質がつくられる。遺伝子工学で利用される手段のうちで、とくに画期的なものはPCR法(polymerase chain reaction法、ポリメラーゼ連鎖反応)で、アメリカのK・B・マリスが発明したものである。DNA鎖中の特定の部分だけを100万倍以上に増幅できるので、ごく微量のDNAをもとにして、目的とする部分の塩基配列を解明でき、またその部分に書かれている遺伝暗号に基づいてタンパク質を生産することもできる。もとになる二重螺旋DNAを加熱して、ばらばらの1本鎖状態にする。そこに目的とする部分の端の配列に対して相補的な短いDNA断片(プライマーとよぶ)を加えて温度を下げると、プライマーが結合して部分的に二重螺旋が再生する。そこにDNAポリメラーゼを加えると、プライマーを出発点として相補的に鎖を合成する。この操作をもとは相補的だった2本の鎖に対してそれぞれ行えば、目的部分だけが2倍に増幅される。マリスの発明の画期的だった点は、酵素として耐熱性細菌が生産する耐熱性DNAポリメラーゼを利用したことである。このことによって、倍化した二重螺旋をふたたび加熱して、それぞれ1本鎖とし、以下、前述したのと同じ操作を1本の試験管内で何回でも繰り返せるようになった。反応溶液の温度を上下させるだけで1サイクルの反応が進み、DNAの目的部分が倍化されるから、10回のサイクルで約1000倍、20回のサイクルで約100万倍になる。この方法の原理をたとえ話で示すと、写真のネガとポジを使って、ネガをもとにしてポジを、ポジをもとにしてネガをつくるというサイクルを繰り返して、2倍、4倍、8倍と増やしていくようなものである。この方法の有用性は限りなく大きく、今日のライフサイエンスのほとんどの場面で利用されている。親子鑑定、病気の診断、犯人の特定、病原体(病原性大腸菌、牛海綿状脳症など)の特定、その他多くの基礎研究などである。ただし、個人の遺伝情報をいとも簡単に知ることができるようになったため、それが差別の道具に使われたりしないよう、その取扱いについて十分に注意する必要がでてきた。
 これらの方法で、動物からはごく微量しか得られないタンパク質でも、大腸菌などにたくさんつくらせることができる。人工的に合成したDNAを使えば、地球上に存在しないタンパク質を創造することも可能になる。絶滅した生物種をよみがえらせる試みもなされており、恐竜は無理としても、マンモスなら近い未来に実現するかもしれない。[笠井献一]

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の核酸の言及

【ウイルス】より

…ビールス,バイラスなどとも発音される。核酸(DNAもしくはRNA)とタンパク質からなる,細菌よりも小さな一群の病原体。遺伝情報を担う核酸がタンパク質の外被におおわれた構造をもち,それぞれのウイルスに特有の宿主となる細菌や生物の細胞に寄生して,宿主のタンパク質合成能やエネルギーを利用して,自己増殖を行う。…

【プリン塩基】より

…核酸を構成する単位物質。イミダゾール環とピリミジン環より構成されるプリン環をもつ塩基性物質。…

【リン(燐)】より

… なお,黄リンは皮膚に触れると火傷を起こし,毒性が強いのでゴム手袋,ピンセットなどで取り扱い,水中,暗所に保存する。【漆山 秋雄】
[生体とリン]
 リンは生体の必須構成元素の一種で,生体内ではほとんどがリン酸として存在し,核酸リン脂質,リンタンパク質,その他の化合物となり,さまざまな機能を果たす。核酸中ではリン酸ジエステルとして,糖とともにポリヌクレオチド鎖の骨格を形成する。…

※「核酸」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

核酸の関連キーワードデオキシリボヌクレアーゼヌクレオシドヌクレオチドリボヌクレアーゼチオレドキシンリボヌクレオシドリボヌクレオチド5'リボヌクレオチドリボヌクレオチドレダクターゼデオキシリボヌクレオチド

今日のキーワード

アレルギー

語源はギリシャ語。「変わった(変えられた)働き」です。関係しているのは、人間の免疫システム。免疫は本来、人の体を守る仕組みですが、ときに過剰反応し、不快な症状を引き起こすことがあります。それがアレルギ...

続きを読む

コトバンク for iPhone

核酸の関連情報