テレビジョン(英語表記)television

翻訳|television

精選版 日本国語大辞典 「テレビジョン」の意味・読み・例文・類語

テレビジョン

〘名〙 (television) 動く画像を電気的に遠方へ送り、同時に再生する通信方式。一般には送信側からの信号を受信し、ブラウン管上に画像を再生する装置だけをさす。テレビ。TV。
※新種族ノラ(1930)〈吉行エイスケ〉断髪女を連れて航空港をご出発「テレビジョンの映写幕に見入った」

出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報

デジタル大辞泉 「テレビジョン」の意味・読み・例文・類語

テレビジョン(television)

動く画像を電気信号に変えて離れた地点に送り、それを映像に再現する通信方式。また、その受像機。テレビ。

出典 小学館デジタル大辞泉について 情報 | 凡例

改訂新版 世界大百科事典 「テレビジョン」の意味・わかりやすい解説

テレビジョン
television

テレビ,TVと略称する。遠く離れた場所でのできごとを,電気的な手段を用いて,いながらにして見られるようにしたものがテレビジョンである。テレビジョンは有史以来の人類の夢であり,いろいろな人々が夢の実現にチャレンジしたが,本格的な研究が始まったのは,電気の正体が明らかになりつつあった19世紀の終わりになってからである。

 現在,テレビジョンと呼ばれるいろいろなしくみの中で,もっとも規模の大きいものがテレビ放送である。日本のテレビ受信機の世帯普及率は,ほぼ100%に達しており,一家で2台,3台の時代になってきている。

 このようなテレビ放送は,ラジオ放送と並び,重要なマス・コミュニケーション手段として,先進諸国はもとより,開発途上国においてもその普及発展に力を入れている。テレビ放送の普及では,規格の統一が重要な問題となるが,テレビジョン技術発展の約100年に及ぶ長い歴史の中で,現在の世界には三つのテレビ放送の標準方式が存在している。日本のテレビ標準方式は,NTSC方式と呼ばれるもので,アメリカ,カナダ,韓国,フィリピンなども同じ方式を採用している。

 テレビ受信機のブラウン管上の画像を注意してよく見てみると,横に走るたくさんの細い線で構成されていることがわかる。これは走査線と呼ばれるものである。NTSC方式では,走査線の数は525本と決められており,ブラウン管上には約500本の走査線が見えている。そして,テレビ画像は映画フィルムのコマと同じ原理で,被写体の動きを数多くのコマに分解して伝えるようになっているが,NTSC方式テレビのコマ数(毎秒像数と呼ぶ)は,1秒間で30コマ(映画は24コマ)である。また,画面の横と縦の比率(アスペクト比)は,4対3と決められている。これが日本の標準のテレビ方式の概要である。

 このようなテレビ放送は,その関連する分野を含めると非常に大きいしくみなので,テレビジョンとはテレビ放送のことであると考えている人も多い。しかし,テレビ放送以外にも現在では,実にいろいろなところでテレビジョン技術が利用されるようになっている。たとえば,テレビのブラウン管はコンピューターワードプロセッサーの文字・図形情報のディスプレーとして数多く利用されている。工業・商業用テレビ,教育用テレビ,さらに気象衛星の台風の雲の画像,ランドサット衛星からの地図のような地表画像,医学用として人体の輪切り像を得るコンピュータートモグラフィなどもテレビジョン技術を応用したものである。このような特別な目的では,人間の目には見えない赤外線やX線に感ずるテレビカメラを用いることもでき,テレビジョンは人間の視覚機能の拡大に大きな役割を果たしている。

 一方,最近では世界的に次世代テレビとしてのHDTV(High Definition Televisionの略。高精細テレビジョン,日本ではハイビジョン)やディジタルテレビ,そして,マルチメディアMultimediaなどのニューメディア実用化の動きが活発である。走査線数の大小がテレビ映像の木目の細かさ,すなわち,精細度(解像力)を決める。標準テレビ方式の走査線数の2倍以上のテレビ方式を,一般的にHDTVと呼ぶ。日本では世界に先駆けて,次世代テレビとしてのハイビジョンの開発・実用化を行ってきた。ハイビジョンの走査線数は1125本であるが,劇場映画のような迫力と臨場感ある映像再現を可能とするために,テレビ画面を大画面化するとともにアスペクト比は,現行テレビ方式の4対3よりもワイドな16対9が採用されている。ハイビジョンは日本の次世代テレビの規格であるが,HDTVの有力な国際規格の一つとしてITU-R(国際電気通信連合無線通信部門)と電波産業会(ARIB)などによって承認されている。

テレビジョン(以下テレビと略記)の歴史は,テレビカメラやテレビカメラの目玉に相当する撮像素子の研究,開発の歴史であったということができる。

 撮像,すなわち基本的なテレビ技術にとって,最初の重要な発見は,1817年のセレン元素の発見であり,具体的なテレビの研究はイギリスのスミスW.SmithとメイL.Mayによってセレンの光電現象が73年に発見されたことによって始まった。

 光電現象を応用して光を電気に変える素子すなわち光電素子と,電気を光に変える素子すなわち電光素子を画面内に多数配置し,これらを1対1で接続(並列接続)してテレビ効果を得る図1のような提案を最初に行ったのは,75年アメリカのケアリーG.Careyであった。この方式は,現在のテレビ技術分類では並列テレビ方式と呼ばれるものである。しかし,精細で良質な画像を得るには,少なくとも数万個以上の光電素子と電光素子および接続線(伝送線)が必要で,テレビ放送などの目的には経済的に実現が困難である。

 今日のテレビ方式の原理につながる提案は,77年にイギリスのソーヤーW.E.Sawyerによってなされた。これは直列テレビ方式と呼ばれるもので,カメラ側で画面を構成する画素(図の光電素子の1個1個と考えてよい)から得られる信号を同時に送出するのでなく,それぞれの画素から得られる信号を順序よく早いスピードで切り替え,1本の伝送線で受信機まで送り,そこでカメラ側と同じ手順で再び画像に組み立てるというものである。

 この考えを具体的に実験によって最初に成功させたのが,84年ドイツのニプコーPaul Nipkow(1860-1940)である。この時代にはまだ電子技術が十分に育っていなかったので,カメラ側で被写体を撮像し,画素に分解,走査(順序よく早いスピードで切り替えること)して電気信号(映像信号と呼ばれる)を発生させ,受信機側で再び映像信号から走査によって画像に組み立てるのに,ニプコー(ニポウ)円板と呼ばれる機械的な走査機構を用いた。本格的なテレビ研究,開発の前段階である。

 1904年にイギリスのJ.A.フレミングが二極真空管を,05年にアメリカのL.デ・フォレストが三極真空管を発明したことによって,電子を制御することによりいろいろな電子効果が得られることがわかり,電子技術が台頭し,テレビの研究が本格化した

 日本では27年に高柳健次郎が撮像にニプコー円板とセレン光電管(光の強弱を電流の強弱に変換する真空管)を使用し,電光素子にブラウン管を用いた走査線40本,1秒間当りのコマ数14のテレビを成功させた。これは当時としては世界でもっとも高い水準にあった。

 しかし,33年にアメリカのV.K.ツウォリキンが,光電変換機能と電子的な走査機能の両方の機能を備えた真空管(撮像管と呼ぶ),アイコノスコープ管の開発を成功させたことによって,それまでのテレビの技術的な問題点を大幅に解決することになった。図2にアイコノスコープ管の概要を示した。日本でも35年に高柳らによってアイコノスコープ管の開発に成功している。

 37年にはイギリスが世界に先駆けて,テレビ放送の標準方式を走査線405本と決定した。41年には日本の現在の標準テレビ方式にもつながる走査線525本方式(NTSC方式)をアメリカが決定した。当時のテレビカメラはアイコノスコープカメラであり,現在の10倍程度の強い照明を必要としたが,一応の実用レベルには達していた。

 これに対して45年には,アメリカのローズA.Roseらが,アイコノスコープ管よりはるかに感度が高く,鮮明なテレビ画像が得られるイメージオルシコン管を開発,本格的なテレビ放送時代への道を開いた。

 50年には最近まで業務用テレビカメラやホーム用ビデオカメラなどにも利用されてきた小型で比較的安価な撮像管,ビジコン管がアメリカのワイマーP.K.Weimerらによって開発された。テレビ放送ではビジコン管は,映画フィルムを映像信号に変換するためのテレシネカメラに利用された。日本ではイメージオルシコン管とビジコン管を使って53年にテレビ放送が開始された。

 日本のテレビ放送は,60年にカラー化されたが,カラーカメラ(頭初イメージオルシコン管使用)では感度と画質の向上のために,オランダで開発されたプランビコン管と呼ばれる撮像管が65年ころから使用されるようになった。プランビコン管は光を電気に変換する面,すなわち光導電面がビジコン管と基本構造が異なっているものの外観はビジコン管に類似している。日本では80年ころからハンディカメラと呼ばれる手持ちで撮像可能な小型なテレビカメラが放送の分野で多く利用されるようになり,テレビの画面が一段と多彩なものとなり,画質も向上した。このためにNHKと日立製作所が共同で開発したビジコン系の小型で高性能のサチコン管が効果をあげた(図3)。

 その後,80年代の後半から90年代にかけて撮像素子をLSI技術で固体化した電荷転送型の撮像板CCDの特性が急速に向上し,ハイビジョンを含む放送用のテレビカメラやホームビデオカメラの大半がCCDを使用するようになった。

 撮像素子はこのようなテレビカメラやビデオカメラの可視光線用のものばかりでなく,X線,紫外線,赤外線,遠赤外線(熱線),超音波などいろいろな画像情報の運び手(キャリア)に対応する特殊な撮像素子が数多く実用化されている。放送を含め最近のテレビ技術やその応用範囲をここまで発展させたのは,撮像素子の進歩とともにカラーブラウン管などの受像素子(ディスプレー素子),ビデオテープレコーダー(VTR)などの記録技術の進歩,電子回路技術の進歩に負うところが大きい。

 テレビ受信機をはじめとする多くの画像ディスプレーに利用されているシャドーマスク形と呼ばれる3色カラーブラウン管は,アメリカのRCA社が1950年ころに実用化したものである。68年には日本のソニー(株)が,電子銃とスリットをくふうしたトリニトロンと呼ばれるカラーブラウン管を実用化した。また,最近では液晶形やプラズマ形などの受像板(フラットパネルディスプレー)も実用化されている。

 テレビ技術はカメラと受信機を結び,遠方でのできごとを即時に伝送するということでは,テレビジョンの本来の目的を十分に達成したということができるが,映画に見られるような記録性は当初十分ではなかった。今日のようにテレビ信号がVTRを用いて自由に記録できるようになったのは,放送分野では1956年にアメリカのアンペックス社が2インチ幅の磁気テープを使用する4ヘッドVTRを実用化してからである。現在の業務用VTRは3/4インチ幅磁気テープを用いるU規格のものが多いが,これは69年にソニーがその原型を作った。また,1/2インチ幅磁気テープを用いる家庭用のベータ方式は,75年に同じソニーから,VHS方式は76年に日本ビクターが発表した。放送の分野でもVTRの小型,高性能化が求められるようになり,1インチ,3/4インチ,1/2インチVTRが目的に応じて利用されるようになった。

テレビの原理説明には,撮像板と,受像板の原理を用いて述べるのがわかりやすくてよい。その後で撮像管とブラウン管を用いたしくみを理解するのは容易である。

 撮像板としては,テレビカメラのレンズの受光面に必要な画素数だけの光電素子,フォトダイオード(PDと呼ばれ,光に感ずる微小な半導体素子でいろいろなものが市販されている)を矩形の平面(横4縦3の割合)に整然と並べたものを使用する。フォトダイオードの1個1個はテレビの画素である。NTSC方式では画面の見える部分(有効画面)の走査線は約500本であるから,フォトダイオードは縦に500個並べる。こうすると横方向には500×4÷3=670個ばかりのフォトダイオードが並ぶことになり,全数で30万個を超えるフォトダイオードが並ぶ。一方,受像板は同じ数だけの発光ダイオード(LEDと呼ばれる)を用意し,縦,横に撮像板と同じ割合で必要な受像画面サイズとなるように並べる。

 このような撮像板を用いたテレビカメラと受像板による受信機を1本の伝送線路で結ぶためには,撮像板の画素の1番と受像板の画素の1番,2番と2番というぐあいに順次切り替えて接続するスイッチと,それを駆動するためのギヤとモーターを設ければよい。こうすることによって伝送線は1本ですむばかりでなく,フォトダイオードから得られる映像信号電流を増幅するための映像増幅器も1台ですむ。切替えスイッチとそれを駆動するための機構は,走査を模擬したものであるが実際の固体化テレビのしくみではこれらもすべて電子化されている。カメラ側と受像機側の二つのスイッチが,つねに正しい位置関係を保ちながら動作するようにするためのしくみが同期である。同期をとるということは,カメラ側の走査と受像機側の走査の歩調を合わせるということであるが,実際のテレビではカメラ側に同期信号発生器を設け,電子的に歩調を合わせるきっかけを与えるためのタイミングパルス(同期信号)をカメラ出力の映像信号に付加して受像機へ送り出す。受像機では映像信号と同期信号を分離し,前者で受像素子を光らせ,後者で走査の同期をとる。テレビの原理をより実際に近い電子的なものとして書き改めると図4のようになる。図4のテレビカメラに使われている撮像板についてより詳しく表すと図5のようになる。この図ではフォトダイオードは縦に3個,横に4個,画素は全体で12個であるとして模型化されている。

 それぞれのフォトダイオードには,走査パルス信号によってフォトダイオードの出力を順次映像信号として読み出すためのスイッチの役目をするMOSトランジスターが接続されている。図中で水平および垂直シフトレジスターとあるのは,水平や垂直走査のきっかけを与える水平同期,垂直同期パルスが入力端子に加えられると,水平シフトレジスターでは,左側出力端子から右側出力端子と順次にパルス出力が得られるものである。シフトレジスターは別名,順序回路とも呼ばれる。これに対して図中の垂直シフトレジスターでは,上から下の出力端子へ順次パルス出力が得られる。

 図では水平,垂直シフトレジスターとも2番出力端子にパルスがある状態を想定している。すなわち,スイッチQh2とQv2が閉じている。この状態ではQh2に接続された垂直信号線とQv2に接続された垂直ゲート線の交点に入っているスイッチQ22が閉じることになり,フォトダイオードD22が垂直信号線,水平信号線を通して映像信号出力端子に接続されたことになる。

 次に水平走査パルスがQh3に移るとスイッチQ22が開となり,Q23が閉となってフォトダイオードD22に替わってD23が映像信号出力端子に接続される。このような走査は順次先に進みD24→D31→D34→D11→D14→D21→と繰り返されることになる。

 一方,すでに述べたようにフォトダイオードは,入力の光に感じて電流を発生する性質をもっているが,もしも今述べたように走査によって順番が回ってきて,スイッチが接続された瞬間だけそれぞれのフォトダイオードの出力が利用されるものとすれば,撮像板に入射する光の利用効率は画素数分の1に低下してしまいカメラの実効的な感度は非常に低いものとなる。

 このような問題を解決するための巧妙なしくみが図5には隠されている。それはそれぞれのフォトダイオードに並列に接続されている微小なコンデンサーである。コンデンサーとは電気を一時蓄える性質をもつものである。このコンデンサーにフォトダイオードが発生する電気を蓄えておき,走査を受けた時点で一度に読み出す。このようにすることで走査による光の利用率低下を防ぐことができる。これは蓄積型撮像素子と呼ばれるものである。実用的な撮像素子はすべてこのような方法を採用している。

 受像板のときにも同じようなことがいえる。走査を受けた瞬間だけ発光ダイオードが光るのでは効率が悪い。次の走査が回ってくるまで同じ強さの発光を持続するような機構を設けるのが理想である。

 撮像管やブラウン管は図6のような電子回路的な構成で走査を行うものでなく,電子ビームと呼ばれる真空中におけるシャープな電子の流れを利用して走査を行う。図6は撮像管とブラウン管によるテレビのしくみを示したものである。現在では通常の電子回路はほとんどがトランジスター化,IC化されて,真空管はほとんど使われなくなっているが,撮像管とブラウン管は例外で,今でも数多く利用されている真空管の一種である。それは画像素子としてえがたいよい性質をもっているからである。

 撮像管の光・電気変換面やブラウン管の蛍光面は,それ自体画素構造をもつものではないが,電子ビームによって走査した部分が等価的な画素となる。電子ビームを一定手順で偏向させ走査を行うが,そのための電子回路を偏向回路と呼ぶ。

走査方式でもっとも基本的なものは,図7-aに示す順次走査である。このように走査線によって構成される画面をラスターと呼ぶ。また,1秒間にどれだけの数のラスターをかかせるかということを毎秒像数という。走査線の本数が多い方式ほど精細度のよい画像が得られ,毎秒像数が多い方式ほど被写体の動きを滑らかに再現できて受信画像のちらつき(フリッカー)も少ない。

 一つのラスターに含まれる有効な全画素数をNとすると,走査線数nとの間には,次式の関係があり,Nはテレビで送られる情報量を表す目安の一つとなる。

 Nn2×(b÷h

なお,bは画面(ラスター)の幅,hは高さで,b÷hはアスペクト比と呼ばれる。順次走査に対して,まず最初の走査で走査線の1本飛びに粗く走査して,次の走査でその間の走査を行い,2回の走査で完全な走査をする方式がある。これを飛越し走査(インタレース走査)方式と呼び,標準テレビ方式ではこのような走査方式が用いられている(図7-b)。その理由はテレビ機器コストや伝送コストの上昇を招かずに,受信画像のちらつきをへらすためのくふうである。飛越し走査で,一つの画面を走査線1本おきに粗く走査し終わる期間をフィールド期間と呼び,その逆数をフィールド周波数flと呼ぶ。2回の走査で一つの完全な画面(ラスター)を作るに要する期間をフレーム期間と呼び,その逆数はフレーム周波数fpである。日本の標準テレビ方式のflは60Hzであり,fpは30Hzである。飛越し走査でも順次走査でも,全走査線数nとフレーム周波数fpが同じであれば,単位時間内に伝送される全画素数は同じである。すなわち,映像信号の帯域幅も同じで,機器や伝送コストも同じになる。しかし,飛越し走査の画面は像のちらつきや動きの滑らかさについては,あたかも毎秒像数が2倍になったような感覚をテレビを見る人間に与えるというメリットがある。テレビ画面上で1本の走査線が形成され,次の走査線に移るまでの時間を水平帰線期間と呼び,一つのラスターが形成され次のラスター走査に移るまでの時間を垂直帰線期間と呼ぶ。これは映画のフィルムのコマのまわりの余白のようなもので,帰線期間はブランキング期間とも呼ばれる。ラスター画面に表れる有効な走査期間と帰線期間の合計が全走査期間で,これで有効走査期間を割ったものを有効走査率と呼ぶ。

 いま図8のような白黒の市松模様パターンを撮像したと考える。この場合,撮像素子の受光面上で市松模様の単位寸法が走査線の幅にちょうどあっているとすると,カメラから得られる映像信号の周波数は,そのテレビのしくみでの最高周波数fmaxを与えることになり,画像は最大の精細度(解像度)を表す。白と黒それぞれのマス目の一つ一つが画素だと考えてもよい。

 走査方式が与えられた場合(走査線数n,フレーム周波数fp,アスペクト比b÷h,水平の有効走査率x,垂直の有効走査率y),最高周波数fmaxは次式で与えられる。

 fmax=1/2Kn2b÷h)(y÷xfp

なお,Kはケルファクターと呼ばれる定数で0.7を使用する。

 すなわち,テレビ映像信号の最高周波数(帯域幅といってもよい)は,走査線数の2乗とフレーム周波数の積に比例するというテレビ方式を考える場合のもっとも重要な公式を得る。

 日本の標準テレビ方式の場合はn=525,b=4,h=3,y=0.95,x=0.84,fp=30であるからfmaxは約4MHz(4000KHz)となる。これを電話の帯域幅約3KHzと比較すると,テレビは電話の1333倍の伝送帯域が必要であることがわかる。

よく知られているように,写真のカラーフィルムは3層フィルムの原理に基づいて,各感光層が入射光の赤(R),緑(G),青(B)成分に反応し,カラー画像を記録するようになっている。このように光をRGB成分に分解し,カラー画像を形成する方式を三原色法という。

 テレビでも三原色法に基づいて,RGBに対応する3台のカメラと,受信機を用いてカラーテレビを構成することができる。

 このような原理に基づいたカラーテレビ方式の問題点は,一つのカラー画像を伝送するのに,3本の伝送路を必要とする点にある。すなわち,テレビ放送では3チャンネルの電波が必要であり,白黒テレビで受信することができないなど実用化が困難である。そこで実際のカラーテレビでは,カラーカメラのRGB映像信号の出力をNTSCカラーコーダーと呼ばれる電子回路で,一つの伝送路で送れるような信号の形式に合成する。図9に日本の標準方式であるNTSCカラーテレビ方式(以下,NTSC方式)の構成を示した。

 NTSC方式では白黒テレビ受信機でも白黒画像として異常なく受信できること,伝送効率を高めるなどの見地から,カラーコーダー内のマトリクスと呼ばれる電子回路で,RGB映像信号を帯域特性をもった輝度信号(白黒テレビの信号に相当)EYと色信号EIEQに変換する。

 次に一つの副搬送波(3.58MHz)をEIEQ信号でお互いがまじり合わないように二相変調し,EY信号に多重化する。この変調された色信号は,搬送色信号ECと呼ばれるものであるが,多重化によって輝度信号に悪影響が出ないようにくふうされている。すなわち,白黒テレビで搬送色信号の成分をよく注意して見ると,走査線ごとに位置のずれた細かい点模様となって人間の目には平均化されて見えることになり,通常テレビを見ているような離れた所からはほとんど見えないなど輝度信号に与える影響は大幅に軽減される。

 カラー受信機ではNTSC信号をデコーダーと呼ばれる電子回路で処理し,RGB映像信号を復元する。実際のカラー受像機では,三つのブラウン管を用いるのは大画面を得るための投写型受信機だけで,通常は図10に示すようなカラーブラウン管が用いられる。

 カラー用のテレビカメラもRGB原色に対応して,三つの撮像素子を用いる3管式や3板式カラーカメラのほかに,撮像素子自身に色分解機能をもたせた単板式カラーカメラがある。前者は放送用,業務用など高い感度とよい画質が要求されるプロ用カメラとして,また,後者は小型軽量と低価格が要求されるホームビデオカメラとして用いられている。このようなカメラでは,被写体像をRGB原色像に分解するのに,モザイク状の色フィルターを撮像板受光面の前面に設けている。この場合,色フィルターのそれぞれの色と,撮像板のそれぞれの画素を,1対1で対応させるようにフィルターを取り付けることによって,電子回路的な処理でRGB映像信号を得ることができる。

テレビ受信機も時代とともに大きく変化してきた。1953年に日本でテレビ放送が開始され,60年ころから一般家庭にも普及するようになったが,当時の受信機は14型(ブラウン管のスクリーンの対角線長が14インチのもの)程度の白黒テレビが標準的な受信機であった。テレビのチャンネルもVHF帯,12チャンネル,ダイヤル切替式であった。もちろん,すべての電子回路は,真空管式で構成された。60年には一部の番組はカラー化されたが,一般家庭のテレビ受信機のカラー化は64年の東京オリンピックを契機に促進された。70年代には電子回路はほとんどが半導体化され,80年代に入るとIC化,LSI化が進み,ディジタル方式も導入されるようになった。最近ではテレビ受信機の構成法も大幅に変わってきている。すなわち,テレビのチャンネルがVHF帯に引き続き,UHF帯のチャンネルが実用化されたこと,衛星放送も開始されたこと,さらに,ホームVTRの普及が進み,レンタルビデオやセルビデオ,テレビゲームなどもテレビ受信機を画像や音声のディスプレー端末として利用するようになってきた。テレビ受信機に要求される機能や性能が大幅に変わってきたのである。

 テレビのチューナー部分は,従来の回転切替式から電子切替式に変わり,赤外線を利用し少し離れたところからチャンネル切替えや音量などを制御するリモートコントロール方式が一般的になった。また,テレビ受信機を多目的に利用できるように,高性能ブラウン管を使って構成した画像ディスプレー・ユニットを独立させ,これにRGB入力やビデオ入力端子を設け,テレビチューナー,衛星放送受信ユニット,文字多重アダプター,ホームVTRなどを必要に応じて接続できるようにした,いわゆるセパレート型(AV型テレビとも呼ばれる)の受信機も多く利用されるようになっている。カラーブラウン管の精細度が向上したこと,LSI化によって高機能な電子回路構成が低コストで利用できるようになったことなどで,テレビ受信機の画質や機能は飛躍的に向上した。
執筆者:

視覚に訴えるカラーの動く映像と豊かな音響によって構成されたテレビは,文字中心の印刷物,音声だけのラジオに比べて,すべての年齢層をひきつける強い力をもっている。テレビ放送の登場(日本は1953年に正式放送開始)以前には,家庭内で音響を伴った動く映像を日常的に享受するという経験は得られなかった。テレビ放送はこうした強い感覚的訴求力で急速に普及したのである。

テレビはおよそ映像となりうるものすべてを放送の対象にすることができるので,テレビ以前の映像メディアである映画作品から,実況中継のように現在進行形で推移する事態をそのまま伝えるものまで,他のメディアにはみられない幅広い領域を番組として扱うことができる。具体的な番組内容は,教育に重点を置いた編成をしているNHK教育テレビやケーブルテレビなどの場合を除いては,報道,娯楽,教育・教養,スポーツなどの領域を,極端に偏ることなく扱う,いわゆる〈総合編成〉がとられており,民間放送ではこれに加えてコマーシャル(テレビCM)が重要な位置を占めている。NHKの場合,一部の海外番組を除いては番組は自社制作されているが,民間放送ではキー局key stationと呼ばれる東京のテレビ局の番組が全国の地方民放局にネットワーク体制で供給されており,地方局の番組の大半はそれらのネットワーク番組で編成されている。キー局では番組のうち半分強を自社制作,あとは外部発注,外部購入で調達しており,最近は外部からの番組購入が増えてきている。近年の傾向として,海外のニュースに関する報道番組素材を通信衛星経由で入手する体制の強化があげられる。テレビ放送の初期には特別の大事件に際して臨時に国際的な通信衛星利用が行われていたが,いまではすっかり日常化し,報道番組素材入手の最も重要なルートとして定着するにいたっている。テレビCMは視聴者にとって目障りな単なる広告も少なくないが,なかには独特の表現領域として注目され,CM文化として重要視される部分もある。
CF →テレビドラマ →放送番組

NHKの番組は視聴者が世帯単位で払う受信料(世帯契約に基づく。事業所,学校などは台数単位で払われる)によってつくられている。受信料はNHKの活動全体を一括して経済的に支える料金として徴収されている。その意味では一つ一つの番組に対して対価として支払っているものではないとされている。一方,民間放送は広告収入を主たる財源として運営されている。広告収入は大きく二つの広告のやり方で得られる。一つは〈番組提供〉という広告方法であり,これには単独のスポンサーが番組を提供する単独提供と複数社による共同提供とがある。スポンサーが支払う広告料金はタイム料と呼ばれ,曜日や放送時間帯によってこの料金は異なる。スポンサーはこのタイム料と番組制作費を支払うことになる。もう一つの広告の方法は,番組と番組の間にあるステブレ(ステーションブレークの略)と呼ばれる1分間の接続時間に挿入するスポット広告から得られる。スポット料金も曜日や時間帯によって異なっている。

 NHKの場合は,その放送活動全体に対して視聴者が直接的に支払う受信料によってまかなわれていることになり,民放の場合は,一般消費者が商品やサービスに対して支払っている金額の中に含まれている広告費部分をとおして間接的にまかなっているといえる。

 こうした従来型の収入形態も放送衛星,通信衛星を利用した衛星放送,多チャンネルのケーブルテレビなどの普及を迎え,新たな有料放送もしだいに導入されてきている。

マス・メディアの中でテレビはいまでも家庭内で人々の時間と費用をもっとも大きく吸収しているメディアである。人々はラジオ,新聞,雑誌に費やす時間以上の時間をテレビ視聴に振り向け,高い受像機を買い入れ,受信料,広告費,電気料を負担している。それだけのことをするのも,テレビが視聴覚メディアとして情緒性の強い訴求力をもっているからであり,また,放送局がそうした訴求力を最大限に活用した番組を,激しい局間競争の中で開発し送り続けてきたためである。他のマス・メディアは,放送のもつ即時性,同時性のうえに視聴覚への訴求力を併せもつテレビの存在を大きな前提として,それぞれのメディアの機能的な特性を生かした位置づけと活動の場所を見いだしている。例えば新聞はテレビの即時性,同時性に対しては記録性を,情緒性に対しては文字言語による解説性を強調することによって,結果としてはテレビとの間に補完的な関係をつくり出している。スポーツ報道などに,そうした関係は典型的に現れているといえよう。

 マス・メディアはまた広告媒体として経済的に重要な機能をもっている。民放テレビに投じられる広告費は,1975年を境にそれまでマスコミ4媒体(新聞,雑誌,ラジオ,テレビ)中で第1位であった新聞を上回り,以来,広告媒体としてマス・メディアの筆頭の地位にある(広告)。テレビがもっとも強力な広告媒体として利用されているのも,テレビがマス・メディアの典型として,極度に大規模な受け手(潜在的購買者)を動員しうるメディアであるからである。番組によっては全国何千万人という数の視聴者を,しかも同時的に獲得できるテレビは,マス・メディアの中でもとび抜けて巨大な規模で機能するメディアなのである。
視聴率

テレビ放送は番組内容のさまざまの影響にもまして,なによりも人々の日常の生活の中で多くの時間を占拠している点で影響するところが大きい。今日,日本人は平均して1日3時間半程度の時間をテレビ視聴に費やしている。勤労者の場合,1日のうち家にいる時間は限られている。その在宅時間の中から寝る時間,家事その他に必要な時間を差し引いた残りのいわゆる自由裁量時間の中で,圧倒的な部分を占めているのがテレビ視聴である。いまや家庭における日常の生活とテレビとは切り離せない関係にまでなっており,テレビがあるということを前提にした生活を送っている。ことに家庭にいることの多い主婦,低年齢の子ども,年寄りにとって,テレビは重要な生活の伴侶なのである。

 テレビは印刷物やラジオと違って,触覚を除けば現実の体験に近い〈疑似〉体験を味わわせてくれる視聴覚的な感覚訴求力をもっている。われわれは現実の対象そのものを現場でみずからの目と耳で前にしているような気持でテレビをみつめている。しかも,視聴者は安全な自分の家の中にいて,観客として画面をみているのである。また視聴する局を自由に変えることができるし,チャンネルを変え,スイッチを切ってしまうこともできる。日本のように多くの局が競争しているところでは,テレビ局は視聴者の関心を引きとめておくために最大限の努力を注いでいる。その結果,テレビ番組はいずれも広い意味で娯楽性を強調することになる。視聴者はおもしろいということが基準になってテレビ番組を選択している。ある程度物質的豊かさを享受しうる現代の社会で,そうした選択行動が,テレビ視聴についてだけでなく,他の消費行動にまで拡大していくのも自然のことである。テレビはこうしてわれわれの日常生活の中に深く浸透し,われわれの生活環境の一部として日常化してしまった。

 もちろん,こうして拡大したテレビの影響について,さまざまの不安がいだかれ,批判もつきない。テレビ視聴が時間的に他の行動を排除する結果になることについて,ことに子どもの問題が指摘されている。また,内容面では大衆的関心への迎合,商業主義的な傾向,放送が免許制であるところからくるジャーナリズムとしての鋭さの欠如などが問題とされている。そうした批判を受けながら,テレビ放送はその速報性,同時性,視聴覚的訴求力,そして全世界的な番組情報収集力によって,人々の生活にとって欠かすことのできないメディアとしての地位を確立してきた。

テレビ放送を世界的にみると,約9割の国ですでに放送が実施され,かつカラー化も進行している。しかし放送はされていても,受け手の側のテレビ受像機の普及は欧米各国や日本に著しく偏在している。また,多くの開発途上国では,多言語,多民族,多文化の障壁をこえて国の統一を図るための重要な手段としてのテレビ放送の普及に努めている。世界のテレビ放送を経営形態でみると,かつてかなりの数みられた国家独占的運営は,中国,朝鮮民主主義人民共和国その他少数の国にみられる程度にまで減少した。先進国,開発途上国を問わず営利を目的としない公共放送と広告収入によって運営される私企業の商業放送との並存体制が一般的になりつつある。圧倒的に私企業体制の強い国の筆頭はアメリカである。放送チャンネルの数,放送時間で世界各国のテレビ放送を比べてみると,アメリカと日本が他をひきはなしてテレビ王国といえそうである。アメリカは電波(空中波)によるテレビ放送ばかりでなくCATV(ケーブルテレビ)が発達しており,このケーブル系のテレビまで含めれば世界一のテレビ国というべきであろう。

 ラジオでもテレビでも電波は隣接した国へは容易に入っていくため,多くの国が国境を接してつながっているヨーロッパでは,他国のテレビ番組を当然のこととして視聴しているところが多い。そのような背景もあってヨーロッパでは早くから諸国間の番組交流が盛んで,現在では通信衛星がそうした目的に活用されている。このような番組の交流は西ヨーロッパだけでなく東ヨーロッパ諸国間でも行われており,さらに西と東のヨーロッパ間でも実施されている。衛星による地域的な番組交流はアジア地域も含めて世界的に拡大しつつあり,アジア地域でもアジアビジョンと称するテレビ・ニュース交換の国際ネットワークが1984年1月から機能している。通信衛星の発達,普及は一国内のテレビ放送を地域間の交流に,さらに世界的な規模での交流へと拡大しつつあるといえよう。

1953年に開始された日本のテレビ放送は30年以上を経過し,テレビメディアの多様化,チャンネルの多数化,基本技術のディジタル化,サービス形態の多様化など新しい事態に直面しつつあるかにみえる。テレビ放送はすでに物めずらしい新しいものではなく,まったくあたり前のものとして生活の中に浸透している現在,人々のテレビ放送に対する関心は一時ほどの高まりはなく,むしろ薄らいでいる。そうした人々の関心を改めてかき立てるために,テレビ局側では番組内容・形式面でいろいろと新機軸を出そうとするのだが,大きな変化を生み出すにはいたっていない。テレビ受像機の普及がいきつくところまでいったことに象徴されるように,テレビ放送というメディアは成長期をすでに過ぎたといっていいし,次なるステップのテレビ放送への移行期にあるといってもいい。そうした段階まできたところで,さまざまの新しいメディアが登場し,さらに新たなメディアが構想されるようになった。

 超長期的な展望はともかく,すでに現実化していることから,今後,一般の人々がテレビと付き合っていく上での問題を2点に限って述べておく。ひとつは多チャンネルということである。10チャンネル程度の時代から一挙に数百チャンネルの時代に突入しつつある中で,テレビの利用者はどのように対応していくのだろうか。選択の幅が拡大する,といって喜んでばかりもいられない。数百のチャンネルの無数ともいえるメニューから,どのようにして,特定の番組を選び出そうというのだろうか。それに,すでにテレビ放送以外にあれやこれやの情報提供メディアが姿を現している。テレビはそうしたメディア群のなかで,情報提供の特徴をどのように見いだし,自らの位置を確定できるようになるのだろうか。

 また,いままでのテレビ放送がマス・メディアの典型として,一方向の大量供給メディアであったことからの脱出策として,注文に応じての特定番組の個別供給という〈オンディマンド〉サービスが望ましいとして,さまざまの開発が行われ,試行が繰り返されている。

 事態の推移の予測は難しい。供給側と需要側との相互作用の進展のなかで,あるかたちが定まってくるということであろう。しかし,新しいメディアの時代になっても,人々の環境の変化を全世界的な規模で常時監視し,視聴覚的に報ずることのできるテレビ放送は,独自の機能をもち続けるし,人々の生活にとって重要なメディアであり続けることであろう。
放送
執筆者:


出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報

百科事典マイペディア 「テレビジョン」の意味・わかりやすい解説

テレビジョン

光学像を電気信号に変換し,無線または有線により伝送,テレビ受像機により映像として再生する通信方式。光学像を細かい四角に分けていくと白黒の濃淡をもつ絵素に分解できる。この明るさを一つ一つ電気信号で伝送,再生し,前と同じに配列して原像を得る。古くはそれら絵素をニポー円板や鏡車を使用して走査する機械的方式が研究されたが,1933年V.K.ツウォリキンアイコノスコープの発明により画期的発展をみるに至った。すなわち撮像管ではきわめて微細に分解した絵素に電子線を走査して電気信号をとり出し,受像機に伝送する。日本ではこの走査は左から右に横線を順次ずらして行われ,1画面525本,毎秒像数30枚で構成される。これを全く同じ順に走査して受像管上に結像する。放送は以前は生放送主体で行われたが,ビデオテープ開発後はほとんどがこれを利用。電波はマイクロウェーブ(マイクロ波)方式,同軸ケーブル方式などで局地中継局に送られ,それぞれの放送局から送信される。日本でのテレビの本放送は1953年NHKにより開始。 近年,半導体技術の急速な進歩により,受信したアナログ信号をテレビジョン内部でデジタル信号化(A/D変換)して,スクリーン上に複数の画面を表示させたり,走査線を多くしてより鮮明な画像を再現することが可能となった。NHKが開発したハイビジョンは次世代テレビジョンとして,さまざまな活用が考えられている。また伝送の際にもデジタル信号を使用するデジタル放送も一部開始されている。→衛星放送CATVカラーテレビジョン工業用テレビジョン高品位テレビジョン
→関連項目サテライト局ジャーナリズム高柳健次郎テレビカメラ放送放送局マス・コミュニケーション

出典 株式会社平凡社百科事典マイペディアについて 情報

ブリタニカ国際大百科事典 小項目事典 「テレビジョン」の意味・わかりやすい解説

テレビジョン
television

映像と音声を離れた場所に送り,再現する仕組み(→放送),およびその受像機器。テレビ,TVと略称する。原理は電送写真(ファクシミリ)と似ているが,眼の光に対する残像を考えて,1枚の絵を 1/50~1/60秒程度で送らなければならない。送信側では,分解走査,および光学像を時間的に連続した電気信号に変換することが必要である。受信側では,時間連続を空間的配列に組み立てる組み立て走査,分解走査と組み立て走査との同期を保つ同期装置,電気信号を光学像へ転換する変換装置が必要である(→走査線)。テレビの開発は 1872年,イギリスのジョゼフ・メイがセレンの光電現象を見出したことによって始まった。1925年にはイギリスのジョン・L.ベアードが,受像機にはっきりと人の顔を映し出すことに成功,日本では 1926年に初めて高柳健次郎が「イ」の文字を伝送する実験に成功した。1953年日本放送協会 NHKが本放送を開始し,1960年にはカラー放送が始まった(→カラーテレビジョン)。2012年に地上波のアナログテレビ放送は完全終了し,すべて地上デジタルテレビ放送に切り替わった。(→ケーブルテレビ

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

世界大百科事典(旧版)内のテレビジョンの言及

【アメリカ合衆国】より

…正式名称=アメリカ合衆国United States of America面積=936万3123km2(本国のみ)人口(1995)=2億6303万人首都=ワシントン Washington,D.C.(日本との時差=-14時間)主要言語=英語通貨=ドルdollar略称USA。たんに合衆国とも,また米国,アメリカとも通称する。United States of Americaの訳語としては,1854年調印の日米和親条約で〈亜米利加合衆国〉の名称が使用された。…

【昭和時代】より

…昭和の元号を冠した時代(1926‐89)を指すが,明治時代,大正時代のように,ある特定のイメージで語られる時代とはいえない。第2次世界大戦の敗北とその後の改革による変動があまりにも大きく,戦前と戦後とは,まったく違った時代といってもよいほどの大きな変化を遂げているからである。
〔戦前〕

【政治,経済】
 1926年12月25日大正天皇が死去し,すでに1921年以来摂政であった皇太子裕仁(ひろひと)親王が践祚(せんそ)して昭和と改元された。…

【高柳健次郎】より

…静岡県に生まれ,1920年に東京高等工業学校(現,東京工業大学)付設の工業教員養成所を卒業した。23年浜松に新設された浜松高等工業学校(現,静岡大学工学部)に赴任し,テレビジョンの研究を始めた。当時のテレビ研究は機械式のものが主流であったが,彼は全電子式テレビの開発をめざした。…

【ドキュメンタリー映画】より

…このドキュメンタリーの手法による劇映画の傾向は,その後も各国で多様化しつつ進展し,ポーランドではアンジェイ・ムンク,イェジー・カワレロビッチ,アンジェイ・ワイダらの〈ポーランド派〉(ポーランド映画),イギリスではトニー・リチャードソン,カレル・ライス,リンゼー・アンダーソンらの〈フリー・シネマ〉,フランスではジャン・ルーシュ,クリス・マルケルらの〈シネマ・ベリテ〉,あるいはまたジャン・リュック・ゴダール,フランソワ・トリュフォーらの〈ヌーベル・バーグ〉,アメリカではライオネル・ロゴーシン,アルバート・メイスルズ,リチャード・リーコックらの〈ダイレクト・シネマ〉が生まれ,その後の各国の映画に大きな影響をあたえることとなった。 現在では,世界の各国で文化的・政治的・経済的事情に従って多種多様につくられている〈ドキュメンタリー〉の大部分はテレビジョンに吸収され,〈テレビ・ドキュメンタリー〉として新しい〈マス・メディア〉,映像による〈世論〉や〈ルポルタージュ〉に転換しつつある。こうした〈ドキュメンタリーの大衆化〉状況のなかで,なお純粋な苦しい自主上映運動をつづける日本のドキュメンタリー映画は,《医学としての水俣病》三部作(1975)の土本典昭と《ニッポン国・古屋敷村》(1982)の小川紳介において,一つの〈新たな視点〉をもちはじめたかにみえる。…

【日本映画】より


【動く写真の到来――最初の日本映画】
 日本における映画の歴史は1896年に始まる。この年,エジソンのキネトスコープが輸入され,神戸の神港俱楽部で初公開された。のぞき眼鏡式のものとはいえ,これが日本最初の映画興行である。次いで翌97年,リュミエールのシネマトグラフが大阪の南地演舞場で,エジソンのバイタスコープが大阪の新町演舞場で公開され,〈動く写真〉の人気はたちまち全国に広がった。この〈動く写真〉の到来はそれぞれの機械の発明からわずか2,3年後のことで,貿易業者たちが競って機械と上映作品を輸入した。…

【分解能】より

…光学系の結像性能を表すもので,その評価法には対象とする光学系によって次のような種類がある。
[分光器の分解能]
 近接する2本のスペクトル線を分離して観察できる能力をいい,波長λの近くでδλの波長差を分離できるときの分解能をλ/δλで定義する。これは分散系の性能とレンズの結像性能で決まるが,レンズを無収差としたとき,回折格子分光器では回折次数をm,開口に含まれる格子線の数をNとしてmNで,またファブリ=ペロー干渉分光器では干渉次数をkフィネスRとしてkRで,プリズム分光器ではプリズムの底辺の長さをt,プリズム材料の分散をδn/δλ(nはプリズムの屈折率)として,t・(δn/δλ)で与えられる。…

【放送】より

…放送は無線通信による送信の一つの特殊な形態で,放送番組と呼ばれるまとまった情報を〈公衆によって直接受信されることを目的〉(放送法)として電波によって広く伝播することをいうが,一般にはラジオ放送,テレビジョン放送のことである。いわばあて先のない無線通信であるところから放送は他のマス・メディアにはみられないいくつかの特殊な機能をもつ。…

※「テレビジョン」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

潮力発電

潮の干満の差の大きい所で、満潮時に蓄えた海水を干潮時に放流し、水力発電と同じ原理でタービンを回す発電方式。潮汐ちょうせき発電。...

潮力発電の用語解説を読む

コトバンク for iPhone

コトバンク for Android