目次 沿革 構成 表記法 国際単位系に含まれない単位の取扱い メートル条約 の全締約国が採用することのできる単一の実用的な計量単位系として1960年に採用された単位系。その国際的な略称をSIといい,フランス語système international d'unitésの略である。
沿革 メートル法は日常の度量衡単位として制定された単位系であるが,1832年に地磁気の測定に応用されて以来,89年の国際度量衡局 による標準供給の開始とあいまって,その合理性から広く科学,技術に普及し,同時に適用領域ごとにつごうのよい単位が作られ,さまざまな単位系に分化していくが,19世紀に盛んになった電磁気の分野でも新しく単位や標準を作る必要があった。その要求にこたえて作られたのがCGS単位系 である。この単位系は三元系であるため力学領域にはつごうがよいが,電磁気量に対しては静電単位系や電磁単位 系などの別が生じ,しかも単位の大きさが実用的ではない。そこで,CGS電磁単位系(CGS emu)の起電力と電気抵抗の単位をそれぞれ109 倍,108 倍してボルトとオームという単位を作り,これを基に電気の実用単位系が構成された。しかし,こんどはこの単位系の内蔵する長さと質量の基本単位が実用的な大きさにならず,力学の単位系と電磁気の単位系を統一することができなかった。1901年,ジョルジGiovanni Giorgiは長さ,質量,時間の単位をそれぞれメートル,キログラム,秒とし,これに電気の実用単位系中の一つの単位を加えた四つの独立な単位からなる単位系を作れば,力学的にも電磁気的にも実用的な大きさの基本単位からなる単位系ができることを示した。この単位系をMKS単位系 という。35年に独立な電気の単位として電流の単位アンペアを採用すれば電磁気の単位の次元が整数になることが示された。これがMKSA単位系 である。このMKSA単位系に熱力学温度 のケルビン度と光度のカンデラを加えて熱力学や測光学の分野まで体系化した単位系が国際単位系である。この単位系は60年の国際度量衡総会で採用されたが,さらに化学領域への適用のため物質量の単位モルが加えられた。ただし熱力学温度の単位の名称は67年にケルビン度からケルビンに変更されている。
現行の国際単位系は以上のような経過で作られ,まだ完成したものではないが,その適用領域は広く,メートル法の現代型と呼ばれ,この単位系の採用による計量単位の統一が英語圏諸国も含む世界各国で推進されている。
構成 国際単位系の構成は次のとおりである。まず互いに独立な概念であると取り決めた七つの物理量 ,すなわち長さ,質量,時間,電流,熱力学温度,物質量および光度を選び,それぞれの単位の名称と記号を与え,大きさを定義する。これらの単位は単位系を構成する基礎として基本単位(基礎単位)と呼び,対応する物質量を基本量(基礎量)という。国際単位系の基本単位(SI基本単位)を表1に示す。大きさの定義は単位名の項目を参照。
基本量でない物理量は組立量(誘導量)と呼ばれ,定義式や経験式など物理量の間に成り立つ関係式を用いて基本量,またはすでにある組立量から導き出される。組立量の単位を組立単位(誘導単位 )といい,対応する物理量の間の関係式にならって基本単位,またはすでにある組立単位から形成される。国際単位系では,組立単位の形成に際して数係数を用いない。すなわち,基本量A ,B ,……,P と組立量Q が,n を数係数として,Q =nA α B β ……P π の関係にあるとし,量Q ,A ,B ,……,P の単位がそれぞれq,a,b,……,pのとき,数値がそれぞれQ 1 ,A 1 ,B 1 ,……,P 1 とすれば,国際単位系の単位の場合,数値に関しては,Q 1 =n ・A 1 α B 1 β ・……・P 1 π が成り立ち,単位に関しては,q=aα ・bβ ・……・pπ が成り立つ。つまり単位は,数係数m ≠1として,q=m ・aα ・bβ ・……・pπ のようにはならない。したがって国際単位系の組立単位の大きさは,それを導いてきた物理関係式によらず,一つの量に対しては一つに定まる。ただし,単位の名称は導いてきた関係式により複数個ありうる。
一つの単位系の中の単位は,対応する物理量の概念の独立性の観点から,基本単位であるか組立単位であるかのどちらかであると考えられるが,空間の幾何学的な量である角度(平面角)と立体角の単位についてはどちらに属するかについて議論があり,1960年の国際度量衡総会はこれらを一括して補助単位 とした。補助単位の名称と記号を表2に示す。
組立単位のうちのいくつかには,使用上の便宜を考慮し,〈特別の名称と記号〉が付与されている。その特別の名称と記号は単独で用いてもよいし,他の組立単位を形成するのに順次他の単位と組み合わせて用いてもよい。特別の名称と記号を有する単位を表3に示す。
屈折率 ,相対透磁率,相対誘電率のようないくつかの量は,いわゆる無次元の量であって,数そのもので表される。このような量の単位は,国際単位系では数の1で表されることがある。
組立単位を作る際に数係数をまったく用いないような単位系を〈一貫性のある単位系〉という。国際単位系の基本単位,補助単位および組立単位は一貫性のある単位系を形成している。これらの単位を〈SI単位〉という。この命名はその倍量単位 ,分量単位 と区別するためのものである。
単位の大きさの調節はSI単位の十進法による倍量単位,分量単位を用いて行う。その倍量単位,分量単位の名称と記号は,その十進法の因数に対応するSI接頭語 をそのSI単位につけ加えることによって形成される。ただし質量の単位では,基本単位の名称キログラムに歴史的な理由からすでに接頭語キロがついており,その倍量単位,分量単位の名称は,接頭語が重ならないよう,適切な接頭語をグラムという名称につけることによって形成される。SI接頭語を表4に示す。
以上より,国際単位系の特徴は一貫性のあるSI単位とその十進法による倍量単位,分量単位とからなる点にあり,固有の物理公式を用いて有理化 された形で用いられる。
表記法 国際単位系には表記法に関する規則があり,そのおもなものは次のとおりである。(1)単位記号は原則として立体の小文字 で印刷される。固有名詞 に由来する単位の記号は最初の文字を立体の大文字 とする(例,A,Pa)。(2)記号は単複同型で,終止符号をつけない。(3)二つ以上の単位の積は次のいずれかの形式で表す(例,N・m,N.m,またはNm)。(4)一つの単位を他の単位で除して作られた場合は,斜めの線,平らな線,または負のべきによる。( )。なお,この場合,単位の日本語の名称は除するほうの単位の前に〈毎〉をつけて羅列する。(5)斜めの線を1行の中に2本以上用いない(例,m/s2 かm・s⁻2 とし,m/s/sとはしない)。複雑な場合はかっこ を用い,m・kg/(s3 ・A)かm・kg・s⁻3 ・A⁻1 とし,m・kg/s3 /Aとはしない。(6)接頭語の記号と単位の記号は密接させる。(7)接頭語を組み合わせて用いない(例,10⁻6 kgは1μkgではなく,1mgとする)。(8)接頭語は単独で用いない(例,106 /m3 を1M/m3 としてはならない)。(9)SI単位の倍量単位,分量単位に指数の付された記号はその倍量単位,分量単位全体のべき乗を意味する(例,1cm3 =(10⁻2 m)3 =10⁻6 m3 ,1μs⁻1 =(10⁻6 s)⁻1 =106 s⁻1 )。
国際単位系に含まれない単位の取扱い 1969年の国際度量衡委員会 は,次の八つの単位を国際単位系の単位と併用してよい単位とした。ただしSI単位の一貫性を損なわない範囲に限られる。時間の分,時,日,角度の度,分,秒,リットルおよびトン。
また専門領域で有用で,SI単位で表すと実験値になり,正確な値にならない次の単位も国際単位系の単位と併用してよい。電子ボルト ,原子質量単位 ,天文単位 ,パーセク 。 執筆者:三宅 史