銀河(読み)ぎんが(英語表記)galaxy

翻訳|galaxy

精選版 日本国語大辞典 「銀河」の意味・読み・例文・類語

ぎん‐が【銀河】

〘名〙
① 晴れた夜空に、一筋の雲のようにかかる光の帯で、無数の星や星間物質が集中しているもの。地球からはその面を横から見ることになるので、その中央線は天球上にほぼ大円を描く。天の川。銀漢。銀渚。《季・秋》
※懐風藻(751)七夕〈山田三方〉「金漢星楡冷、銀河月桂秋」
※俳諧・本朝文選(1706)五・序類・銀河序〈芭蕉〉「日既に海に沈で月ほのくらく、銀河半天にかかりて星きらきらと冴たるに」 〔白帖〕
銀河系外星雲、小宇宙、島宇宙などの別称。

出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報

デジタル大辞泉 「銀河」の意味・読み・例文・類語

ぎん‐が【銀河】

天の川。地球上から見たときの銀河系。天漢。銀漢。 秋》
銀河系と同等の規模をもつ無数の恒星星間物質からなる集合体。形から、渦巻き銀河棒渦巻き銀河楕円銀河不規則銀河などに分類される。銀河系外星雲。系外銀河。小宇宙。島宇宙。
[類語]天の川銀漢スター恒星惑星星座綺羅星星辰星屑星雲星団首星流星流れ星彗星箒星一番星一等星新星超新星変光星ブラックホール連星主星伴星遊星小惑星衛星α星

ぎんが[人工衛星]

昭和62年(1987)2月に打ち上げられたX線天文衛星ASTRO-Cアストロシーの愛称。宇宙科学研究所(現JAXAジャクサ)がてんまの後継として開発。名称は「銀河」に由来する。高感度のX線望遠鏡全天X線監視装置γ線バースト検出器を搭載。大マゼラン雲に出現した超新星からのX線を捉えることに成功。セイファート銀河からのX線強度の時間変動やクエーサースペクトルの観測を行った。平成3年(1991)11月に運用完了。

出典 小学館デジタル大辞泉について 情報 | 凡例

改訂新版 世界大百科事典 「銀河」の意味・わかりやすい解説

銀河 (ぎんが)
galaxy

天の川の意味にも使われるが,天文学の分野においては天の川に象徴されるわれわれの銀河系と同じ形態の恒星の大集団をいう。一般に直径数千光年から数十万光年の大きさの空間内に,100万個から1兆個にも及ぶ恒星と星間物質が密集しているものを指す。その多くは我々の銀河系の外側,はるか遠方にあるために,比較的近距離のマゼラン銀河アンドロメダ銀河でも,肉眼や小望遠鏡に淡い雲のようにしか映らない。かつてはその見かけによって〈星雲nebula〉として一括されていたが,1925年にE.ハッブルによって〈アンドロメダ星雲〉を含む3個の〈星雲〉にセファイド型変光星が同定され,その距離が推算されるに及んで,星雲の一部がわれわれの太陽系を包む巨大な恒星の集りである銀河系の外にあって,銀河系と同等の規模をもつことが明らかになった。このため,銀河系外星雲extragalactic nebulaと呼んで輝線星雲,散光星雲,惑星状星雲などの銀河系内星雲と区別される。また,その大規模に密集した恒星系のようすを表して,島宇宙とか小宇宙と呼んだこともある。天の川,つまり銀河がわれわれの銀河系の全体構造を反映していることと,夜空での見かけが淡い乳色状の塊であることから,銀河またはギャラクシーgalaxyの名が与えられるようになった。したがって,20世紀初頭における銀河の発見は,人類を宿した太陽系を包む巨大な恒星系が,宇宙に無数に存在する銀河のうちの平凡な1個に過ぎないことを教えた。

 1771年にC.メシエがまとめたメシエ星表(M番号)に38個が登録されたのをはじめとして,1888年のNGC星表や1895-1908年のIC星表などの恒星でない天体,すなわち星雲や星団をいっしょに記載した天体表に収録されてきたが,32年にはH.シャプリーと,エームズA.Amesによって,約13等より明るい1249個の銀河だけを選んでその特性を記した銀河カタログ《Shapley-Ames Catalogue》が出版された。現在ではド・ボークルールde Vaucouleurs夫妻らによってまとめられた《Third Reference Catalogue of Bright Galaxies》(1991)がもっとも広く用いられ,2万3024個の銀河を収録している。収録数の多いものとしては,ツビッキーF.Zwickyらによる銀河と銀河団のカタログ(1961-68)があり,3万1350個の銀河と9700の銀河団を収めている。アンドロメダ銀河はM31またはNGC224のカタログ番号で表記されるが,このようなカタログ番号の与えられていない暗い銀河は,無名銀河anonymous galaxyとして文字AまたはAnを冠し,その赤経,赤緯座標を付記してA16 38-30 58のように表記されることが多い。

銀河の分類は,1926年にハッブルによって提唱された形態分類が基本となっているが,銀河の明るさの中央集中度に基づいたヤーキス分類などもある。ハッブルの分類ではその見かけの形によって,楕円銀河(E),渦巻銀河(S),棒渦巻銀河(SB),不規則銀河(Ir)に大別される。楕円銀河は滑らかな輝度分布をもち,際だった内部構造を示さない。その見かけの扁平率は円形に近いものから,軸比が10:4程度に平らなものまであるが,それよりも扁平なものは知られていない。渦巻銀河は,若い青い星々の集積や星間塵による暗条によって形どられる渦巻状の腕(渦状腕)の存在によって特徴づけられる。一般に,中央にある楕円体状のバルジbulgeと呼ばれる部分と,それに重なる円盤状の部分からなり,渦巻構造はこの円盤内の副構造である。棒渦巻銀河では,中央の楕円体部分が細長く棒状に近い構造を示し,その両端から渦巻状の腕が伸びている。棒状に細長くなっている度合にはさまざまなものがあり,S型とSB型は連続的につながっている。大ざっぱに分類すると,両者はほぼ同数となる。S型とSB型をまとめて円盤銀河(D),あるいは渦巻銀河(S)と総称することもある。中央の楕円体部分と円盤部分の勢力比は,円盤部分のかろうじて認められるもの(S0/a)から,ほとんど円盤部分だけのもの(Sm)まであり,渦巻の巻込みの度合も,S0/a型からSm型にかけて緩くなっていく。S0/a型に近いものを早期型渦巻銀河,Sm型に近いものを晩期型渦巻銀河と呼び習わしているが,進化の系列とはまったく関係がない。早期型から晩期型になるに従い,渦状腕は滑らかなものから,多くの塊を含む副構造に富んだものへと移り変わる。その極限として,円盤全体にそのような副構造が卓越し,不規則な見かけを与えるようなものが,不規則銀河(I。ハッブル分類のIrにあたる)である。楕円銀河と渦巻銀河の中間の型としてハッブルはS0型を導入した。これは円盤部分を備えてはいるが,渦巻構造の見えない銀河で,大部分は構造的にE型とS型の中間に当たると思われるが,なかにはS型の構造をもちながら,その円盤部分に渦巻状の副構造の発生しないものもあると思われている。その原因としては,若い星を生む原材料となる星間物質の欠如があげられている。最近では形態分類がさらに細分化され,円盤部のリング状の副構造の顕著さやその位置,または中央部のレンズ状副構造の有無などが分類基準に加えられている。

見かけ上もっとも明るい銀河は,積算実視等級が0等の大マゼラン銀河(I)で,次いで2等級の小マゼラン銀河(SBm),4等級のアンドロメダ銀河(Sb)であるが,両マゼラン雲が約16万光年のところにあるのに対して,アンドロメダ銀河は,210万光年の遠方にあり,後者は前2者に比べて桁違いに勢力の大きな銀河であることがわかる。このように比較的近い銀河では,個々の恒星に分解して観測できるので,よく調べられている恒星の特性を利用して,その絶対光度と見かけの明るさの比較から距離を決定する。とくに脈動型変光星の変光周期と絶対光度の関係が適用されるが,変光星の理論に改訂があると,宇宙の距離尺度も改訂される。20世紀中ごろには,このような理由から宇宙の尺度が約2倍にも伸びた。もはや個々の星が観測できないほど遠方にある銀河については,星団や巨大な電離水素領域の見かけの大きさや明るさ,その中に出現した超新星の最大光度などを利用して距離を決定する。また内部の速度場を反映するスペクトル線の広がりと絶対等級との間の経験的な相関法則も用いられている。ハッブルは,1929年に,このようにして決めた距離と,その銀河のスペクトル線の赤方偏移が示す後退速度との間に,よい比例関係の成り立つことを発見した。このハッブルの法則を逆用して,スペクトルを撮ることによって,さらに遠方の銀河の距離を決定している。距離が知れると,各銀河の絶対的な勢力,すなわち幾何学的な大きさや絶対光度を知ることができる。楕円銀河や早期型の渦巻銀河は一般的に大きく,その直径は数十万光年,絶対等級は-22等にも及ぶ。一方,不規則銀河や,矮小楕円銀河と呼ばれる銀河では,直径が数千光年,絶対等級が-16等程度の勢力かそれ以下のものも多い。これらは伴銀河として大型銀河に付随するものも多く,小規模なものでは,孤立した巨大な電離水素領域や広がった球状星団といってもよさそうなものまでがある。直接写真に比べて,スペクトルを撮るのが困難なために,見かけの形態だけから絶対光度を推定するくふうもされている。渦巻銀河については,渦状腕の発達度や円盤部分の表面輝度を判定基準として,ⅠからⅤの5段階にわたる〈光度階級〉が導入され,Sa-Smの各分類型ごとに,絶対等級と対応づけられている。最近の統計的研究によれば,この対応づけは,各光度階級の明るい部類の銀河についてはほぼ正しいが,暗いものまでを含めていくと必ずしも対応関係がよくないといわれている。楕円銀河のうちには,とりわけ明るいcD型と呼ばれるものがあって,その形状の周縁部分が異常に遠方まで裾を引いて広がっていることで見分けられる。この種の銀河は,銀河団の中心付近に多く,絶対等級が-23等ないし-24等にも達するので,遠い宇宙空間での基準灯台のような役割を果たすことができる。一方,暗い矮小楕円銀河は,表面輝度の低いものがほとんどで,近いものしか発見されていない。

 近年の大型望遠鏡の発達や高性能検出器の開発,それに大型コンピューターと連動して用いられる高速測定器などに関する技術的発展によって,銀河についての複雑な情報を数量的に処理することも可能となってきた。その結果,従来の写真判定は,表面輝度分布の定量的な表現やそのパラメーター表示へと移行しつつある。楕円銀河の表面輝度分布は,見かけの中心からの距離をrとすると,exp{-αr1/4}に比例する関数によってよく近似できる。また早期型の渦巻銀河の円盤部の表面輝度分布は,exp{-βr}に比例する関数でよく近似される。ここでαとβは距離尺度を決めるパラメーターで,楕円銀河の場合には,αは比較的共通である。したがって標準的な楕円銀河では,その全光度を与えると,扁平率を除いた分布のようすは一意的に定まってしまう。それに対して渦巻銀河では,r1/4法則にほぼ従う中央の楕円体状部分と,単純な指数法則にほぼ従う円盤部分とがあるために,その両者の光度の比が形態を定量的に分類するためのよいパラメーターとなっている。しかし,渦巻銀河の場合には,このほかにも総光度を表すパラメーターが必要となるために,本質的に二次元的な分類が必要とされている。

天球上での銀河の見かけの分布は一様ではない。天の川を挟む約40度幅の帯の中では,その外側に比べて,見える銀河の数は格段に少ないが,これは,われわれの銀河系の天の川を含む面,つまり円盤部分の中心面付近に,多量の星間塵があって,外界からの光を吸収しているからである。吸収をあまり受けない赤外線を用いた探査から,天の川の中にも,マッフェイ1,マッフェイ2などの銀河が見つかっている。比較的明るい銀河に限ると,おとめ座からおおくま座に連なる帯状の領域に集中が見られ,さらにたどっていくと,この帯は全天を巡って環状に伸びている。これは,おとめ座銀河団を中心に,われわれの銀河系とアンドロメダ銀河を含む局部銀河群をもその一部とする,扁平な銀河の大集合を見ているのであって,超銀河系と呼ばれている。銀河は,明るいものが数個に暗いものがたくさん加わって,銀河群を形成したり,数百から数千の明るいものが集まって銀河団を形成している。さらに,複数の銀河団がその間に帯状に分布する銀河によってつながって,超銀河団を形成している場合もある。稠密(ちゆうみつ)な銀河団の構成銀河には,楕円型やSo型が多く,渦巻型は少ない。反対に,散在銀河には渦巻型が比較的多い。平均してみると,比較的見かけの明るい銀河にあっては,渦巻銀河が全体の約半数を占め,残りの半分のまた半分をSo型が,3割を楕円銀河が占めている。不規則銀河は全体の1割程度である。このような見かけの頻度比率を絶対数の比率に直すには,各種の銀河の絶対光度に関する分布を知らなくてはならない。その補正を行うと,不規則銀河が圧倒的に多くなるとされている。カタログに記載されている銀河のうち,絶対写真等級が-17.5等よりも明るいものを数えると,その平均空間密度は,1000万光年立方につき約1個ということになる。したがって,狭い空間領域に複数個の銀河がまったく偶然に存在する確率は極端に小さい。現実には,数個の銀河が隣接しているものも少なくない。銀河団の外部に見られる多重銀河は,その発生起源と関係があるのではないかとも考えられている。

渦巻銀河の構造は,われわれの銀河系を内から見たり,隣のアンドロメダ銀河を外から観察することで,詳しく調べられている。中央の楕円体状の部分と円盤部分は一体となって,いわゆるレンズ状の星系を構成している。太陽もこのレンズ状星系の一員であって,その銀河系内の空間運動特性や化学組成,年齢は,円盤種族と呼ばれるこの星系の代表的なものである。すなわち,円盤種族は100億年近い年齢と重元素に富んだ組成をもち,銀河中心を巡ってほぼ回転運動をしている。この回転運動の角速度は外縁部ではほぼ一定値にとどまり,その結果隣接する円環領域はお互いにずれていく。中央の膨らんだ部分では円盤面に直交する方向の運動成分も顕著で,重元素の量比は,中央に近づくにつれて円盤周縁部の数倍に増大する。円盤部分の中心面近くにはガスやちりなどの星間物質が数百光年の厚さの薄い層をなして分布し,その中の濃密領域で恒星が誕生しつつある。これらの若い星々は種族Ⅰの星系と呼ばれ,ほとんどが円盤中心面内を運動し,円盤種族に近い化学組成をもっている。星間物質の濃密領域や若い星々の集団(散開星団や電離水素領域など)は連なって分布し,渦巻状の模様をなしている。銀河の恒星生成活動は,中央の楕円体状部分が円盤部分に移り変わるあたりでもっとも激しく,そこから外向きに渦状腕に沿って広がっているが,それより内側では星間物質はかえって少ない。はっきりと観測されるこのレンズ状星系を包んでハロー種族,または種族Ⅱと呼ばれる希薄な星系が広がっている。この星系は球に近い楕円体状に広がっていて重元素比は円盤種族のものの1/10~1/10000と低い。球状星団は代表的なハロー種族の構成員であり,年齢は100億年程度か,もしくはそれよりも古い。ほぼ等方的に分布し,銀河の中心を巡る軌道運動をしていて,なかには離心率の大きな運動を示すものもある。

 渦巻銀河に見られる渦状構造は,銀河の発見以来多くの注目を集めてきた。円盤状の構造から回転していることは容易に推定できるが,かつて想像されたように,渦状腕がひとつながりの帯の回転によって生じたものだとすれば,時間がたつにつれてきつく巻き込んでしまうであろう。しかし,実際には一体の帯ではなく,青い若い星の集りが帯状に並んでいるのであって,これらの大質量星の寿命が数百万年の程度であることを考えれば,数億年で1回転する銀河円盤にあっては,時が移るにつれて異なる星を見ていることになる。大質量星が隣接する場所に次の大質量星の誕生を誘起するならば,回転との相乗効果で,渦巻模様が発生する。しかし,星間物質の高密度領域も渦状腕に沿っているので,現在では,渦状構造は銀河円盤部に生じた疎密波であるとする考え方が主流を占めている。密度の高い領域では星間物質が圧縮されて若い星が誕生し,渦状に際だって見えるとするもので,分類型によって違う渦巻模様の特徴も説明できそうである。この説では,物質は渦巻模様を巻き込む向きに追い越していくのが妥当とされているが,観測的には円盤部の回転の向きと渦の巻込みの向きの関係は確立されていない。というのも,見かけの模様のどちらが手前かという判定がつけがたい場合があるからである。しかし,星間物質による吸収のようすなどから判定してわかっているものについては,回転の向きは巻込みの向きと一致している。楕円銀河内の星の運動は,渦巻銀河のハロー種族のものに近く,扁平な楕円銀河の場合でも,その形状は回転運動よりも異等方無秩序運動によって規定されている。渦巻銀河に残存する星間物質の割合は,晩期型のものほど多いが,特殊なものを除くと不規則型でも総質量の20%を超えない。また,若い青い星の生成率が残存星間物質の量に依存するため,晩期型の銀河ほど青く見える。

渦巻銀河の円盤部の星の表面や星間物質の化学組成は,ほぼわれわれの太陽のものに近いが,中央部に向かうに従って鉄などの重元素の量比が数倍に増加するとともに,窒素,酸素などの特定の軽元素の量比が1桁近くも増える。楕円銀河の中心部では,さらにこの傾向が強いようである。逆にハロー部分では重元素は少ない。このような観測的状況証拠に基づいて,原初銀河が重元素を増しつつ収縮したとする銀河形成過程が推測されている。すなわち,ハロー種族の星が,核融合によって重元素を作っては超新星として爆発を繰り返すうちに星間物質の部分がしだいに自己重力によって収縮し,ある時点からは遠心力が効き始め,回転軸方向だけの収縮が進んで円盤種族が形成され,そのなごりの星間物質が現在種族Ⅰの星々を生みつつある。楕円銀河の場合には,初期収縮の段階で活発な恒星生成活動があり,回転運動の少ないことも手伝って円盤は形成されず,星間物質もほとんど残っていない。

銀河を構成する星やガスが,その運動と相互の万有引力とのつり合いによって,ほぼその形状を保っていると考えると銀河の総質量を求めることができる。とくに渦巻銀河の場合には,円盤部分の回転速度曲線が総質量を求めるためのよい手がかりとなる。このようにして求まる力学的な質量は,観測される星の明るさから推算される光学的質量よりも大きく,場合によっては1桁以上も大きい。円盤部分の回転速度は早期型ほど速くて,数百km/sにも達するが,観測できるかぎりの外縁部でも速度の下がらないものが多く,ハロー種族のように広がった領域に大量の見えない物質が存在するとする作業仮設も提唱されている。われわれの銀河系やアンドロメダ銀河は,大型の銀河に属し,その明るい部分の質量はほぼ太陽質量の1011~1012倍(約1045g)と見積もられている。

銀河の中には,強いX線,紫外線,赤外線,電波などの大量の高エネルギー粒子や,高温プラズマに起因すると思われる放射線を放っているものがある。電波銀河,セイファート銀河,マルカリアン銀河,クエーサー,BL Lac天体などと呼ばれるものがそれである。可視域では一般に青紫色光の過剰を示し,活動的な銀河中心核,あるいは活動的な中心部分をもっているものが多い。これらが銀河の進化の特殊な時代に見られるかなり普遍的な現象なのか,特殊な条件のもとに生まれた銀河だけに見られる不安定性に起因する現象なのか,まだ明らかではない。宇宙全体の膨張や収縮の影響を考えないならば,自己の重力だけでまとまって孤立している恒星系としての銀河は,しだいにエネルギーを失って中心部に密集していく星からなる核部分と,エネルギーを得て外縁部分に広がっていく星からなるハロー部分に分離発達していくものと推察される。このようにして生じる濃密な中央の核部分が,上記のような活動的現象を引き起こすものと思われる。見かけの大きさが小さいのに表面輝度が異常に高い,コンパクト銀河と呼ばれるものの一部は,まさにこのような構造をもっていると推定されている。クエーサーやBL Lac天体もコンパクト銀河の極端な例で,中心に巨大なブラックホールがあり,それにガスや星が引き込まれて重力エネルギーが解放されると考えられている。この種の特異銀河のうちには,中心核から〈ジェット〉と呼ばれる物質噴射を思わせる突起形状を示して高エネルギー放射を行っている。また活動性の影響が銀河全体に及んで,爆発を思わせる不規則な形状を示すものもある。これも不規則銀河の一種ではあるが,不規則型のⅡとして区別されている。多重銀河の多くは,お互いの重力作用によって,形状を乱されているが,これらのうち正確な分類が困難なものも,特異銀河の範疇(はんちゆう)に入れられる。

太陽のような恒星の平均密度が約1g/cm3なのに対して,われわれの銀河系のような銀河の明るい部分の平均密度は,実にその1/1025にすぎない。銀河の物質はそれほど緩やかにしか重力によって束縛されていないので,複数個の銀河が遭遇すると,その影響は非常に大きい。渦巻銀河の場合には太い渦状腕を発達させたり,恒星生成活動を活発化し,相互の間に橋状の連なりのできることもある。また特殊な条件を満たす遭遇では,2個の銀河が合体して,より大きな1個の銀河になってしまうことさえありうる。銀河団の中心付近に見られるcD銀河は,このような合体によって,次々に近づく銀河をのみ込んで巨大化したのではないかと思われている。このように,重力的束縛の緩やかな銀河は,一般に環境の影響を受けやすく,銀河の形成や構造進化を考えるうえで,環境効果も見逃してはならない。銀河の進化を実証的に明らかにするには,遠方の,したがって遠い昔の銀河の世界を観測するのがいちばん直接的である。異常を示さないふつうの銀河で観測にかかっているもっとも遠方のものは,約50億光年程度のかなたのものであるが,特異銀河の一種とみなされているクエーサーでは,z=3.53,つまり150億光年ほどもの遠方のものまでが観測されている。

銀河の観測には,口径の割合に焦点距離の短い,いわゆる口径比の小さい明るい望遠鏡を用い,低倍率で見るのが適している。したがって,双眼鏡はこの目的に向いている。これは銀河が遠方にあって,個々の星としてよりも,その集合として,淡く白っぽく光る広がった塊として目に映るからである。ふつうの銀河の表面輝度は,明るい部分でも1秒角四方の中に19等星とか18等星が1個あるのに匹敵する程度なので,夜空の暗いところで見ることが肝心である。専門的観測の場合には,遠方にある見かけの小さな銀河も対象とし,焦点面に置いた乾板や光電検出器により直接に撮像するので,焦点距離の長いことも望遠鏡の条件となる。地球大気の揺ぎのために生じる解像限界の0.5秒角までを分解するには,10mないし20mの焦点距離の望遠鏡が要る。しかも,なるたけ口径比を小さくしようとすれば,必然的に大型望遠鏡となってしまう。現在では,口径4mないし6mの大型望遠鏡が銀河観測に活躍していて,その多くは,f/2.7ないしf/3.5の直接焦点と,f/7.5ないしf/10程度のカセグレン焦点を備えている。赤方偏移や内部速度場,化学組成を決めるためのスペクトル観測にも,明るい分光器を必要とする。最近では光電効果を利用した電子的な検出器が活用され,それぞれの位置に到達する光子の数を積算する方式が広く用いられ始めている。しかしながら掃天探査を目的とするような場合には,広い天域を一度に撮影しなければならず,撮影面積も大きくなるために情報量は膨大なものとなる。探査目的には,明るくて写野の広いシュミットカメラが引き続き活躍している。20世紀後半に入ってからの銀河天文学の急速な発展を反映して,1970年代には,チリのアンデス山脈やハワイのマウナ・ケア山などの世界的な天文観測適地に,続々と大型光学・赤外望遠鏡が建造された。91年にスペースシャトルによって打ち上げられた口径2.4mのスペーステレスコープは,空気の揺ぎのないことを生かしてf/24という大口径比で,逆に銀河を個々の星に解像してしまうことをねらっている。

 ふつうの銀河中の星間ガスや分子雲,また高エネルギー粒子からのシンクロトロン放射の観測には,電波望遠鏡が活躍するほか,特異銀河については,大気圏外からのX線,紫外線領域の望遠鏡,さらにはγ線望遠鏡も重要な情報を提供する。

 銀河の理論的研究では,新しい手法として,コンピューターによるシミュレーションが大幅に取り入れられている。とくに銀河をたくさんの質点の集りとみなして,その万有引力による相互作用で,どのように構造が変わっていくかを追跡するのに利用され,質点の数は数千から数十万点に及ぶ。さらに,星間物質も加えて,星と星間物質の間のやりとりも組み込むことによって,銀河の形成や進化のシミュレーションも行われている。このような計算で,現在いちばん不確実な要素は,銀河の中での星の生成率である。
銀河系
執筆者:


銀河 (ぎんが)

児童雑誌。1946年10月~49年8月,新潮社発行。第2次世界大戦後,山本有三を編集顧問に創刊。有三執筆の創刊のことば〈銀河のはじめに〉には,敗戦の中から立ちあがる新生日本の子どもたちに向けて,宇宙の悠久と,真理に生きることの尊さが熱意をこめて語られていた。滑川道夫,高橋健二,吉田甲子太郎らが編集長を務めた。国語国字問題に熱心な有三の主張から,初めは2段横組みを用いたが,読者の支持が得られず,後半は縦組みに改められた。北畠八穂《ジロー・ブーチン日記》,壺井栄《あばらやの星》,椋鳩十《動物スケッチ》,平塚武二《ウイザード博士》,坪田譲治《ゆめ》,岡本良雄《ラクダイ横丁》,国分一太郎《雨ごいの村》,塚原健二郎《犬のものがたり》など多くの作品を生んだ。同じ時期の《赤とんぼ》(1946年4月~48年10月),《子供の広場》(1946年4月~50年5月),《少国民世界》(1946年7月~48年10月?),《少年少女》(1948年2月~51年12月)などとともに戦後の良心的児童雑誌として評価されたが,これらの雑誌は1950年代初めまでにすべて廃刊となり,大衆的な娯楽誌に席を譲った。
執筆者:

出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報

百科事典マイペディア 「銀河」の意味・わかりやすい解説

銀河【ぎんが】

天の川を指すこともあるが,天文学の分野では,銀河系と同様の形態をしている恒星の大集団を指す。かつてはその見かけから〈星雲〉の名で一括されていた。銀河系の外にあって銀河系と同等の規模をもつことが明らかになって以後は,銀河系内星雲と区別するため,銀河系外星雲と呼ぶこともある。島宇宙,小宇宙の名もある。 銀河の分類は,1926年にE.ハッブルが提唱した形態分類が基本で,楕円銀河渦巻銀河棒渦巻銀河不規則銀河に大別され,渦巻銀河と棒渦巻銀河をまとめて円盤銀河と総称することもある。銀河は一般にいくつもの銀河が集まって銀河群や銀河団を形成しており,さらに複数の銀河団がその間にある銀河によってつながり,超銀河団を形成していることもある。 なお,銀河の中には,X線や電波,高温プラズマによると思われる放射線を放出しているものがある。→セイファート銀河電波銀河
→関連項目アンドロメダ銀河銀河系外星雲衝突銀河ソンブレロ銀河マゼラン銀河

出典 株式会社平凡社百科事典マイペディアについて 情報

ブリタニカ国際大百科事典 小項目事典 「銀河」の意味・わかりやすい解説

銀河
ぎんが
galaxy

恒星星間物質ダークマター(暗黒物質)の大集団。銀河系(太陽が属する銀河,天の川銀河)やアンドロメダ銀河などが代表例である。恒星など普通の物質よりも巨大な質量をもつダークマターのハローに囲まれている。質量や大きさは巨大なものから矮小なものまでさまざまであり,数は小さな銀河ほど多い。大きな銀河の質量は 1000億~数千億太陽質量程度,直径は 10万~20万光年ほどである。小さな銀河では数億太陽質量で直径 1万光年と小ぶりなものもある。形は渦状腕をもつ円盤状の渦状銀河(渦巻銀河),丸い形の楕円銀河,小さくて暗い矮小銀河などさまざまな形態を示す。銀河は群れをなしている。数個から数十個の銀河の群れが銀河群,数千から数万個の群れが銀河団,それらがさらに集まって超銀河団(→宇宙の大規模構造)をつくる。宇宙全体には数千億の銀河が存在する。銀河の距離を測定し,赤方偏移宇宙の膨張による光の波長の伸び方)と組み合わせることによって,宇宙の構造や,宇宙膨張の加速や減速を知ることができる。銀河系や近傍の銀河は誕生後 100億年以上たった進化の進んだ銀河であるが,赤方偏移が大きく遠い銀河は,光速度が有限なので昔の姿を現している。このような銀河を観測することによって,誕生直後の銀河や銀河の進化を研究することができる。エドウィン・P.ハッブルは写真上での銀河の形態から,銀河を楕円型,レンズ状,渦状,棒渦状,不規則型に大別したが,これら以外の特異銀河や矮小銀河も多い。楕円銀河は見かけの扁平度に従って分類され,渦状銀河や棒渦状銀河は渦状腕の巻きつき方の強弱や中心部の大きさによって細分される。レンズ状銀河は楕円銀河と渦状星雲の中間形態で円盤状をしているが渦状腕をもたない。不規則銀河は規則性のない不定形をしている。矮小銀河は質量,大きさともに小さな銀河をさす。銀河までの距離は大小マゼラン雲のように 15万光年程度の近くから,100億光年以上という遠くまで広がっている。アンドロメダ銀河は,地球からの距離が 210万光年と比較的近い大渦状銀河である。

銀河
ぎんが

日本海軍の陸上爆撃機。水平爆撃,急降下爆撃,雷撃という3種類の任務を1機でこなせる攻撃機として 1940年に計画され,海軍の技術者が主務者となって設計された。民間技術者でなかったためか,工場での製造には手間がかかった。しかし,高速性能など優れた点も多く,1943年から中島飛行機で量産され,1944年から第一線に投入された。中翼単葉の双発機で,エンジンは誉 (1820馬力) 2,乗員3,全長 20m,全幅 22m,総重量 10.5t,最大速度時速 551km,航続距離約 2000km。武装は 20mm機関砲1,13mm機関銃1,爆弾搭載量 500~1000kg。生産機数 1002機。夜間戦闘機に改造したものを「極光」と呼び,20mm固定砲2門と旋回砲1門を装備していた。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

知恵蔵 「銀河」の解説

銀河

恒星と星間物質などからなる大集団。恒星に次ぐ宇宙の最も基本的な構造。典型的なものは、数千億個の恒星と星間物質が、直径数十万光年の範囲に密集している。銀河の質量、大きさは様々で、形から楕円銀河、渦巻き銀河、棒渦巻き銀河、不規則銀河に分類される。これらの構造は、力学的な釣り合いの違いで理解される。太陽が属する銀河が銀河系で、渦巻き銀河の1つ。恒星やガスは円盤状に集中し、直径約10万光年の回転する銀河円盤を作る。銀河円盤の中心にはふくらみ(バルジ)があり、円盤内では、ガスや若い星が集まって渦巻き構造を作る。さらに、銀河円盤を囲んで、球状星団など古い天体が球状に広く分布(ハロー)する。質量の90%以上は、広がった暗黒物質のハローが占めていると考えられる。太陽は、銀河系の中心から約2.8万光年離れた銀河円盤内にある。

(土佐誠 東北大学教授 / 2007年)

出典 (株)朝日新聞出版発行「知恵蔵」知恵蔵について 情報

普及版 字通 「銀河」の読み・字形・画数・意味

【銀河】ぎんが

天の河。

字通「銀」の項目を見る

出典 平凡社「普及版 字通」普及版 字通について 情報

世界大百科事典(旧版)内の銀河の言及

【星雲】より

…雲のように見える天体ということで星雲と呼ばれたが,星雲の中には,われわれの銀河系内の星間物質が光り輝いているものと,銀河系のはるか外側にあって,数十億個から数兆個の恒星の大集団であるものとの二つがあり,前者を銀河系内星雲,後者を銀河系外星雲と呼んでいた。現在では,これを区別して,銀河系内星雲を単に星雲,銀河系外星雲を銀河galaxyと呼んでいる。…

【児童雑誌】より

… 昭和初期には,プロレタリア児童誌《少年戦旗》(1929)が生まれたが,すぐ廃刊になり,1937年の日中戦争を境にして児童雑誌も徐々に統制され,44年には《日本ノコドモ》《良い子の友》《少国民の友》《少年俱楽部》《少女俱楽部》の5誌だけになった。 第2次世界大戦後は,《赤とんぼ》《子どもの広場》《銀河》(1946),《少年少女》(1948)などの文芸的に質の高い良心的雑誌がせきを切ったように創刊されたが,50年までにはみな廃刊となり,かわって《おもしろブック》《少年》《少女》《漫画少年》など一連の新しい大衆娯楽雑誌がつぎつぎに登場した。そしてテレビの発達とともに,〈読む〉雑誌から〈見る〉雑誌へ,月刊から週刊へと移りかわり,現在では,児童雑誌といえば学年別月刊誌以外はほとんどが週刊劇画雑誌で,年齢を問わず,幅広く読まれている。…

※「銀河」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

脂質異常症治療薬

血液中の脂質(トリグリセリド、コレステロールなど)濃度が基準値の範囲内にない状態(脂質異常症)に対し用いられる薬剤。スタチン(HMG-CoA還元酵素阻害薬)、PCSK9阻害薬、MTP阻害薬、レジン(陰...

脂質異常症治療薬の用語解説を読む

コトバンク for iPhone

コトバンク for Android