精選版 日本国語大辞典 「雷」の意味・読み・例文・類語
かみ‐なり【雷】
いかずち いかづち【雷】
(2)雷に関する語には、音の側面を強調するナルカミ・ハタタガミや光の側面のイナヅマ・イナビカリ、あるいは落雷を表わすカムトケなどがあり、イカヅチは神格化された雷の総称として、音や光の区別なく用いられた。やがてナルカミ、さらにはカミナリが雷の総称として用いられるようになる。
かん‐なり【雷】
らい【雷】
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報
電光が見え、雷鳴が聞こえる天気状態。遠方の雷は、電光が見えても雷鳴は聞こえない。そこで気象庁では、観測地点の天気状態を表現するにあたって冒頭のように規定している。
[三崎方郎]
雷は強い上昇気流によって発生した積乱雲に伴っておこる。積乱雲の中では上昇気流と降水粒子(雨滴、氷晶、あられなど)の相互作用の結果、初めは電気的に中性であった雲の中で正負の電気の分離がおこり、雲の下層から中層にかけて負電荷が、上層に正電荷が蓄積される。正電荷、負電荷の蓄積量がそれぞれ20クーロンほどに達すると、電光放電がおこる。積乱雲が初めて電光放電を生じた時点を発雷という。発雷後も電気の蓄積と電光放電による中和の繰り返しがおこるが、最盛期にはその頻度は1分間に数回にも達する。
雷は積雲程度の弱い対流では発生しない。強い上昇気流が必要である。それをおこす原因の違いによって熱雷、界雷(または前線雷)、渦雷(低気圧雷)などの呼び名があるが、実際にはこれらの原因が複合する場合も多い。熱雷がおこるのは、日射によって地面が強く熱せられると同時に、上空に寒冷な空気が流入した場合である。これによって下層の多湿な空気が強い浮力を与えられて上昇し、雲頂が対流圏の頂部、すなわち圏界面とよばれる高さ約10~15キロメートル近くまで達することによっておこる。夏季の雷の典型である。界雷は寒冷前線の突入によって暖気が急激に押し上げられた場合で、冬季の雷はこれに属する。冬季は地表面の温度がすでに氷点に近いので、雲頂高度は夏季雷より低くとも発雷する。
[三崎方郎]
年間雷雨日数の世界分布は、低緯度の陸地、とくに南アメリカとアフリカでもっとも多く、年間200日に近い地方がある。東南アジアがこれに次ぐ。日本では、1998(平成10)~2002年の5年間をみると、北海道地方各地では年間10日以下でもっとも少なく、関東、近畿、九州地方で10~30日、北陸地方では40~60日ともっとも多い。北陸で年間の雷日数が多いのは冬季の雷が多いためである。たとえば金沢では、冬季6か月間の雷日数は年間のそれの60%にも達している。
[三崎方郎]
雷雲を構成する対流構造の最小単位を雷雨細胞(セルcell)という。幼年期の細胞は直径も高さも5キロメートルほどで、上昇気流が全域を占める。細胞の側面からも空気が細胞に吸い込まれるので、上昇気流は雲頂に近いほど強くなる。最盛期になると細胞の直径は10~20キロメートルとなり、雲頂は圏界面に達し、上昇気流は毎秒10メートルを超える部分も出てくる。驟雨(しゅうう)が降り始めると、地面がぬれて冷えるので、対流作用は衰えてくる。消滅期には弱い下降気流が細胞の全域にわたり、地上では弱い雨が続く。
最盛期の細胞が衰弱せずに持続するためには、高温多湿な空気を絶えず取り入れて、大気の不安定状態を持続する仕組みが必要である。前線に熱雷発生の条件が加わると、大形で激しく、かつ持続性のある細胞が生まれる。これを超大細胞(スーパーセルsuper cell)という。断面図(
の左)でみると、雲の進行側の底面から侵入し、斜め上後方に向かう湿った強い上昇流がある。その中では水蒸気が凝結して雨や雪になるので潜熱が放出され、それによって空気は暖められるため、さらに浮力を増す。こうして圏界面に達した雲は水平に流れ出て雷雲の鉄床(かなとこ)部を形成する。この高度では気温が零下50℃にもなるので、雲粒はすべて氷晶である。下降流は雲の背面の中層から侵入し、上昇流の下側を通って雲底に抜ける。上空から落ちてきた雪やあられがこの下降域を通過するとき、一部が蒸発するので空気を冷却し、その下降をいっそう助ける。雲底に抜けた下降流の一部は雲の進行方向に向かうが、これが雷雨の際によく経験される一陣の涼風である。最盛期の細胞の中では、このように凝結と蒸発のサイクルによって上昇流と下降流よりなる対流系がしばらくの間保持されるのである。通常の細胞の寿命は1時間に満たない。一つの雷雲ではこうした雷雨細胞が交互に発生するので、全体としての継続時間は平均2~3時間であるが、10時間を超えることもある。この間、界雷ならば前線の進行につれて移動する。熱雷であっても上層風や地形によって移動する。その速度は普通毎時数十キロメートルである。関東地方では北西の山岳部に発生した熱雷は平野部に出て南東に進行することが多い。
[三崎方郎]
雷雲内の電荷の分布を測定してみると、雲の上部には正電荷が分布し、雲の中部から下部にかけてほぼ同量の負の電荷が分布していることがわかる。これは、1930年代の終わりにイギリスのシンプソンG. C. Simpsonらが行った気球観測で知られたことであるが、その後、世界各地で行われた多くの観測によっても大筋では異論なく認められている。シンプソンはなお、雲底の近くに正電荷が蓄積されている小領域があることもみいだしているが、これをポケット電荷とよんでいる。雲の中で正負の電荷が蓄積される平均的な位置は、メートル高度で示すより、温度高度で示したほうが都合がよい。対流圏の中では気温はほぼ一定の減率で上空ほど低温になっているので、地上気温が決まればメートル高度と温度高度との間にはいちおうの対応がある。電荷の位置をメートル高度で示すと、観測点の緯度や季節によってまちまちの値になってしまうが、温度高度で示すとほぼ一定の値になるのである。2000年代当初までの結果をまとめると、おもな正電荷はおよそ零下30℃の高度より高いところに、負電荷はそれより下に分布していて、その中心は零下15℃あたりの高度に位置している(
の右)。そしてその電気量は正負それぞれほぼ等量で、10~40クーロンと推定されている。なお、零下30℃の高度といえば、中緯度の夏季であれば約9キロメートルに相当する。しかし冬季なら約3キロメートルとなる。たとえば冬の北陸の雷でも実際にそうなっていることが確かめられている。雷雲の中では正負の電荷が分離して、正は上部に、負は下部に分布しているということが観測によってわかったが、初め中性であった雲の中でどのようにしてこのような電荷の分離が行われるのかについては、いまだに確定した説がない。前にも述べたように、雷雲の中では激しい上昇気流があり、しかも電荷の分離はその領域で行われている。氷晶や雪片などの小さな降水粒子は吹き上げられ、あられなどの大粒な降水粒子で、上昇気流より大きい落下速度をもつものが落ちてくる。したがって、小さな降水粒子が正に、大きな降水粒子が負に帯電するような仕組みが解明されれば、雷雲の中でどうして電気が発生するのかが説明されるはずである。
正電荷や負電荷が蓄積される高度では、前にも述べたように気温が氷点よりかなり低いので、降水粒子は未凍結の雨滴の状態では存在しえない。したがってその帯電機構はいずれ氷晶とかあられに関係したものである。そこで、これまでに、雪の成長過程、氷晶とあられの間の摩擦、氷の中での温度勾配(こうばい)による分極作用など、さまざまな過程が考えられてきたが、そのなかで現在もっとも有力視されているのが高橋劭(つとむ)(1935― )が提唱した「着氷電荷発生説」である。この説によると、あられと氷晶とが衝突する際に電荷が生成され、周辺の気温が零下10℃以下のときにはあられが負に、氷晶が正に帯電し、零下10℃以上ではその極性が反転するという。この説にしても雷雲帯電機構のすべてを説明するまでには至っていない。
[三崎方郎]
雷放電は瞬時に数キロメートルの長さにわたって大電流を流す放電である。このような長距離にわたる放電がいかにしておこりうるかが第一の疑問であった。落雷は雲と地面の間の電光放電であるので、雲の中の放電と違って放電路の写真観測ができる。そこで放電機構の詳細はまず落雷について明らかになった。この研究に用いられる特殊カメラは、考案者であるイギリスのボイスC. V. Boysの名をとってボイスカメラとよばれているが、このカメラではレンズがフィルムに対して一つの円周上を高速回転している。それでこのカメラで電光を撮影すると、ストリーマーstreamer(線状の閃光(せんこう))の影像が静止カメラのそれと比べて時間差によるずれを生ずるので、それを読み取ればストリーマーの形や位置ばかりでなく、それが延びる速度を求めることができる。
はこれをモデル化して描いたものである。肉眼では一瞬に見える落雷の間に、数個の雷撃が約0.05秒の間隔で繰り返されている。これを多重雷撃という。落雷のなかには1回の雷撃で終わるものもあるが、それは全体の4分の1にすぎず、普通は3回か4回の多重雷撃で、これらを含む全体の継続時間は約0.3秒である。ときには10回以上という多重雷撃もある。さらに細かくみると、各雷撃はそれぞれ雲から地面に向かう前駆と、その直後におこる帰還雷撃よりなっていることがわかる。前駆雷撃は雲の中の負電荷を導き、かつ電離された道筋を大気中につくりだすものと理解されている。とくに第1雷撃の前駆は
にみられるように特殊な構造をもっており、階段状前駆とよばれる。この前駆では、雲底から50マイクロ秒の時間間隔でストリーマーが次々と延び出して停止する。このとき、あとのストリーマーは直前のストリーマーの停止点よりさらに50メートル延長した点で停止する。これは空気の絶縁を破壊して放電路を開拓するために必要な過程なのである。階段状前駆が地面に近づくと、最後の数メートルから数十メートルは地面から放たれたストリーマーで結合し、その瞬間強い明るさのストリーマーが、前駆によって開拓された放電路をたどって大地から雲に向かう。これが帰還雷撃で、瞬間的には数万アンペアの大電流が流れている。こうして雲の下部の負電荷が中和される。第2雷撃以下の前駆は雲の中のさらに上部の負電荷を導いて地面に向かう。このときには第1雷撃の放電路の電離状態がまだ完全には消滅していないので、それとまったく同じ放電路をたどる。そしてこのときは第1雷撃の階段状前駆のように途中で停止することなく地面まで達する。これを矢形前駆という。自然の落雷では前駆はいま述べたように雲底から始まって地面に向かうが、超高層ビルのように著しく突出した構造物に対する落雷では、前駆はビルの先端から始まって雲底に向かう。このような雷撃をトリガード雷撃triggered lightning(触発された雷撃)とよぶが、このような構造物に落雷する確率が著しく高くなる理由として注意すべきである。帰還雷撃の継続時間は60マイクロ秒程度であるが、ときとしてその1000倍から1万倍も長い時間にわたることがある(
の第3雷撃に続く影線)。この間、100~1000アンペアの電流が連続して流れている。落雷で出火するのはこの種の雷撃であって、「熱い雷放電」とよばれ、落雷総数のうちの20~25%を占めている。これに対して、前記の連続電流を含まない雷撃では、機械的な破壊を伴うだけで、焼痕(しょうこん)を残すことがないので「冷たい雷放電」ともよばれる。以上は夏の雷の標準的な落雷特性であるが、冬の雷の特性はこれとかなり異なることが、1970年代後半から1980年代にかけて名古屋大学空電研究所(当時)の竹内利雄(1931― )らによって発見され、その後北欧の冬雷についても同じことが確かめられている。夏の落雷は雲の負電荷が地面に落ちるのに反して、冬の雷では多くの落雷で正電荷が雲から大地に落ちている。これは、冬の雷雲では雲頂近くの風速が下層と比べて相当に大きいため、正負の電荷の中心を連ねる軸が雷雲の進行方向に前傾していることに由来する。雷の上部の正電荷から始まった放電は、直下に負電荷がないために直接地面に到達して落雷になる。また連続電流を含む雷撃すなわち「熱い雷放電」が大多数を占める。さらに1回の放電で中和される電気量も電流も夏の雷に比べて大きい。冬の雷は前にも記したように、雲頂が低く一見して雷雲であると気づかないこともあるうえ、しばしば大きな被害をもたらすので、北陸では「一発雷」といわれて恐れられている。
[三崎方郎]
落雷を避けるうえで確実に安全な場所は、接地した金属の板もしくは網ですきまなく囲まれた箱の内部である。これはファラデー・ケージといって、理論的にも完全な安全性が保証されるが、現実の生活では望めない。実際上これに近いものは、鉄筋の入ったコンクリートの建物、電車、自動車で、これらの中にいればまず安全である。避雷針は、その先端を頂点とし、鉛直軸に対して60度の開き(保護角という)をもつ円錐(えんすい)形の中をいちおうの安全領域としているが、この保証は絶対的なものではない。避雷針に近い場所ほど安全性は高まるので、油タンクなどの危険物に対する避雷針では、保護角を45度以下にとるように定められている。家屋の中にいる場合にも、電灯線、テレビ、電話機などに近づかないことや、木造の家であれば、窓ぎわや壁に寄りかからないようにすることが肝要である。落雷を直接に受けなくても、付近に落雷すれば身近にある電線にはかなり大きな誘導電流が流れるから、電気器具類はプラグを外しておいたほうがよい。
野外で雷にあったときは問題が多い。近くに避難できる小屋がなければ、洞窟(どうくつ)や凹地で姿勢をできる限り低くすることが肝要である。首から上に傘などの金属製のものを差し出してはいけない。林の中も避難場所となるが、とりわけ大きな木の付近は避け、個々の木からも数メートルは離れたほうがよい。幹に寄りかかるのはもっとも危険である。
山頂や尾根はきわめて危険な地形であるばかりでなく、岩場であることが多いので、特殊な注意が必要である。岩場は電気抵抗が高いので、雷撃電流が落雷点で吸収されず、付近一帯の岩の表面を掃いて流れる。このため集団登山者が1回の落雷で多数死傷したりする。沿面放電は岩の小さな割れ目などは飛び越えて流れるから、このような場所では凹地であっても上半身が露出していれば電流の通路にあたるので、かえって危険である。大きな岩を避雷針と見立てて、その頂上を仰角45度以上で見る範囲の中で姿勢を低くするのがよい。しかし岩に近づきすぎたり、岩に寄りかかってはいけない。とにかく山では襲雷を一刻も早く察知することが必要である。このためには雷雨予報に注意し、ラジオ受信機の雑音に注意する。雲に覆われ、雹(ひょう)が降りだしたら危険は間近だと考えるべきである。
落雷による年間の平均死亡者数は、日本では1960年代には約35名であったが、その後漸減して1990年代には約5名になった(警察白書)。アメリカでは1959~1994年の平均で約90名が約50名に減少している。雷撃を受けた人の体には痛ましい火傷が目だつが、雷撃による火傷は短時日に治癒する性質のもので、死因とはならない。死因は、体内を流れる電流による呼吸器系と心臓の麻痺(まひ)によるものである。雷撃を受けると呼吸も心臓も止まるから、そのまま放置すればまもなく死亡する。一刻も早く人工呼吸と心臓マッサージを行うことによって、多くの場合蘇生(そせい)するといわれる。
[三崎方郎]
雷鳴、稲光、落雷などの諸現象は、地震、日食、月食、流星、虹(にじ)などの特異な自然現象とともに、世界各地の諸民族の間でさまざまな意味づけが行われている。これらの諸現象は、人間の力の及ぶ範囲をはるかに超えて生起するものであり、その出現を予測することはむずかしく、人間の日常的知識の枠組みのなかには、かならずしも収まりきれないものであった。とくに落雷や地震は、それ自体で人命を奪うことさえある圧倒的な力そのものであり、その点でとくに人間が関心を向けるものであった。これらの諸現象に対してなんらかの背景を与えることによって、各民族はこれらの現象を知識の枠組みに組み込もうと努力し、それを説明可能なものとすることによって、自然に対する恐れを取り除こうとしてきたのである。
雷に対する各民族の意味づけには、さまざまな形態があり、各民族のもつ世界観・宇宙論のなかで雷が占める位置の相違によって、雷に関する信仰は民族ごとに異なった様相を示している。マレー半島のネグリト系の民族の間では、雷は神の不機嫌や怒りの表れとされている。神は、人間のある種の行為、たとえば人を殺すこと、近親相姦(そうかん)を犯すこと、動物をからかうこと、鏡のなかの自分の顔を見て笑うこと、神に捧(ささ)げるべき血を吸ったヒルを焼くこと、などに対して怒りを表すとされており、この怒りが雷という形で天から地上に届くのである。この神の怒りを鎮めるためには、神に血を捧げることが必要とされ、雷がとくに激しい場合には、落雷の危険を避けるために、神に対し雷がやむように祈りと血を捧げる。これを行わなければ、落雷によって木が倒され、その結果、洪水がおこり、人々は押し流されてしまうと信じられている。
以上と同様な信仰はボルネオ島のプナン人やガジュ人の間にもみられるが、より一般化した形で雷を天上の神と結び付ける信仰は世界各地にみられる。たとえば、ギリシア神話の最高神であるゼウスも雷神の性格を備えており、その武器は雷霆(らいてい)と稲光であった。ギリシア神話と同じくインド・ヨーロッパ語族系であるインド神話のなかのインドラ神や北欧神話のなかのトール神も雷神であり、やはり雷霆を武器としていた。また、古代中国の最高神であった上帝も、その神性の表れは雷であった。メキシコのインディオ諸族も雷神あるいは稲妻の神といった存在を信仰していた。
特定の石や樹木をそれぞれ雷石、雷木として、聖なるものとみなす習慣も諸民族の間にみられる。また、雷を鳥と結び付けて考える信仰も広くみられる。北米先住民のトリンギト人の間では、雷は雷鳥の羽ばたきによっておこるとされている。雷鳥の背中には大きな湖があり、そのため、雷鳥の羽ばたきにより、雷に伴って多量の雨が降ると信じられている。同じく北米先住民のマンダン人やヒダツァ人も、雷は雷鳥の羽ばたきによっておこるとしており、ミウォク人は大カケスの一種をこの雷鳥としている。また、シベリアのオロチ人の間では、シャーマンの守護霊が雷鳥である。シャーマンは脱魂状態に入り、守護霊の雷鳥がシャーマンに化身して天空へ飛行するとされ、悪霊に奪われた病人の霊魂を霊界においてシャーマンが取り戻すことによって、病気が治癒すると信じられている。
以上のように、雷というものに対し、世界各地の諸民族はさまざまな意味づけを行っており、その形態は民族ごとに異なっている。しかし、その根底には、雷という人間の力を超えた現象に対し、なんらかの形での説明を試みるという共通性がみられる。
[栗田博之]
雷が自然現象とされなかった段階では、人々は雷は天にいる神の荒々しく動き回る姿と信じ、落雷すると雷獣というものになったとして捕らえようとして追い回したなどの記録がある。岡山県には、昔、雷の害があまりにひどいので、雷除(よ)けの祈祷(きとう)をしたところ、夕立なかばに松の木に落雷し、怪獣がうろついていた。それを僧が捕らえて、以後けっして害をせぬとの誓約をさせて放してやった。そのおかげでこの村は落雷などの被害がない、と伝えた所がある。古典の記載によると、古くは小童や蛇の形をとって現れると考えられ、その後菅原道真(すがわらのみちざね)を祀(まつ)る北野天神を中心とする御霊(ごりょう)信仰が広まると、これと結び付いて、雷神信仰は天神信仰に吸収されていった観がある。しかし、雷はもともと農耕生活にいたって縁の深いもので、ことに、生育中の稲が雷の訪れによって穂ばらみするとの観念は全国的である。電光をイナズマとよぶのは、「稲の夫(つま)」の意であろう。年越(節分)のときの豆をとっておいて、初めて雷の鳴ったとき食べると、夏病(なつや)みしない、などというのもその類である。冬、雷が鳴るとその年は豊年と伝える地方もあり、雷の落ちた田には青竹を張って祀る地方もあった。茨城県下では、苗代のころ雷が鳴ると、割り竹をたたいて追い払う。これをカンダチオイ(神立ち追い)というが、神の示現の素朴な姿を思わせるものがある。
豊作をもたらす反面、災いを及ぼすことの多いこうした霊威に対しては、人々の対応には矛盾したものがみられる。ある土地で「元日に雷が鳴ると米・黍(きび)熟す」と伝え、別の土地で「元日に雷あれば人災あり」と伝えたのも、その例といえる。雷を除ける呪(まじな)いとしては、蚊帳(かや)に入るとか、線香を立てるとか、草鞋(わらじ)を片足つくってそれを捨てるとか種々の法があったが、「桑原(くわばら)桑原」と唱えるのもその一つで、この呪文(じゅもん)はすでに謡曲『道成寺(どうじょうじ)』、狂言『神鳴(かみなり)』にみえている。このことばの由来は、菅原天神の領地のあった地名からきたとする江戸時代中期の小野高尚の『夏山雑談(なつやまざつだん)』の解説に従うことが多いが、確かなことはわかっていない。
[萩原龍夫]
『金原淳著『空電』(1944・河出書房)』▽『「雷神信仰の変遷」(『定本柳田国男集9』所収・1962・筑摩書房)』▽『孫野長治著『雲と雷の科学』(1969・日本放送出版協会)』▽『畠山久尚著『雷の科学』(1970・河出書房新社)』▽『原田大六著『雷雲の神話』(1978・三一書房)』▽『佐尾和夫著『空電――雷の電波ふく射をめぐって』(1981・成山堂書店)』▽『高橋劭著『雲の物理――雲粒形成から雲運動まで』(1987・東京堂出版)』▽『竹内利雄著『雷放電現象』(1987・名古屋大学出版会)』▽『上之園親佐監修『雷――その被害と対策』(1988・教育社)』▽『饗庭貢著『雷の科学』(1990・コロナ社)』▽『橋本信雄著『雷とサージ――発生のしくみから被害防止まで』(1991・電気書院)』▽『速水敏幸著『謎だらけ・雷の科学――高電圧と放電の初歩の初歩』(1996・講談社)』▽『北川信一郎・河善一郎・三浦和彦・道本光一郎編著『大気電気学』(1996・東海大学出版会)』▽『道本光一郎著『冬季雷の科学』(1998・コロナ社)』▽『岡野大祐著『カミナリはここに落ちる――雷から身を守る新しい常識』(1998・オーム社)』▽『北川信一郎著『雷と雷雲の科学――雷から身を守るには』(2001・森北出版)』▽『李均洋著『雷神・龍神思想と信仰――日・中言語文化の比較研究』(2001・明石書店)』▽『北川信一郎監修、かこさとし作『天地のドラマ すごい雷大研究』(2001・小峰書店)』▽『日本大気電気学会編『大気電気学概論』(2003・コロナ社)』▽『ピーター・ハッセ、ヨハネス・ヴィジンガー著、加藤幸二郎・森春元訳『雷保護と接地マニュアル――IT社会のアキレス腱』(2003・東京電機大学出版局)』▽『中谷宇吉郎著『雷』(岩波新書)』
出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報
出典 株式会社平凡社百科事典マイペディアについて 情報
出典 株式会社平凡社世界大百科事典 第2版について 情報
(饒村曜 和歌山気象台長 / 宮澤清治 NHK放送用語委員会専門委員 / 2007年)
出典 (株)朝日新聞出版発行「知恵蔵」知恵蔵について 情報
出典 日外アソシエーツ「歌舞伎・浄瑠璃外題よみかた辞典」歌舞伎・浄瑠璃外題よみかた辞典について 情報
…《日本霊異記》にみえる雷より授かった子で,元興寺の僧。尾張国阿育知(あゆち)郡片蕝(かたわ)里の農夫が田に水を引くときに童形の雷が落ちて来た。…
…雷を神格化した神。雷電様(らいでんさま),鳴神(なるかみ),ドンド神,ハタ神,イナズマ様,イカヅチ,カミナリなど雷鳴や雷光にもとづく名称が多い。…
※「雷」について言及している用語解説の一部を掲載しています。
出典|株式会社平凡社世界大百科事典 第2版について | 情報
大阪府中部,大阪市の中央部にある運河。東横堀川から中央区の南部を東西に流れて木津川にいたる。全長約 2.5km。慶長17(1612)年河内国久宝寺村の安井道頓が着工,道頓の死後は従弟の安井道卜(どうぼ...
9/11 日本大百科全書(ニッポニカ)を更新