コトバンクはYahoo!辞書と技術提携しています。

地図 ちず map; chart

7件 の用語解説(地図の意味・用語解説を検索)

ブリタニカ国際大百科事典 小項目事典の解説

地図
ちず
map; chart

地球表面の一部または全部の状況を,普通は縮小して,記号化し,平面上に表現したもの。地図は土地の状態を空中写真のようにそのまま縮小して描いたものではなく,作成者が必要と認めた事項だけを選択のうえ,通常は総描し,地名,数値,国境,行政界などの見える形としては存在しない要素も含め記号化して表現したものである。

本文は出典元の記述の一部を掲載しています。

出典|ブリタニカ国際大百科事典 小項目事典
Copyright (c) 2014 Britannica Japan Co., Ltd. All rights reserved.
それぞれの記述は執筆時点でのもので、常に最新の内容であることを保証するものではありません。

デジタル大辞泉の解説

ち‐ず〔‐ヅ〕【地図】

地球表面の一部または全部を一定の割合で縮小し、記号・文字などを用いて平面上に表した図。「世界地図」「白(はく)地図

出典|小学館 この辞書の凡例を見る
監修:松村明
編集委員:池上秋彦、金田弘、杉崎一雄、鈴木丹士郎、中嶋尚、林巨樹、飛田良文
編集協力:曽根脩
(C)Shogakukan Inc.
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

百科事典マイペディアの解説

地図【ちず】

地球表面を平面に表示したもの。目的によって種々の地図投影法がある。表示される事物は一定方式での記号(図式)で客観的に表現され,地表の形は一定の縮尺で正しく縮小して表示される。
→関連項目地形分類図地図帳フォトマップ

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. ご提供する『百科事典マイペディア』は2010年5月に編集・制作したものです

世界大百科事典 第2版の解説

ちず【地図】

地球表面の一部または全部を縮小して平面上に描き表したものが地図である。英語では陸の地図をマップmap,海や湖の地図をチャートchart,また狭い地域の大縮尺の地図(図面)をプランplanと区別して呼ぶが,日本では地図という用語が共通に使われている。もっとも地図という用語は明治初期以降の用語であって,江戸時代には絵図(えず)と呼ばれていた。また地球表面だけでなく,月の表面を描いた月面図,あるいは地球を球面のまま模型にした地球儀などがあり,さらにまた地球の凹凸をやや誇張して立体的に表したレリーフマップ(立体地図),地表を斜め上から俯瞰した形で描画した鳥瞰図などもあり,これらも広義には地図の応用ないし変形と考えることもできる。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

大辞林 第三版の解説

ちず【地図】

地球表面の一部または全部の状態を、一定の割合で縮め、文字・記号を用いて平面上に表したもの。マップ。チャート。 「 -帳」

出典|三省堂
(C) Sanseido Co.,Ltd. 編者:松村明 編 発行者:株式会社 三省堂 ※ 書籍版『大辞林第三版』の図表・付録は収録させておりません。 ※ それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

日本大百科全書(ニッポニカ)の解説

地図
ちず
map

地球表面の全部または一部の状態を、記号や文字を用い、縮小して、一般には平面上に描き表したもの。地図は、複雑に分布する土地の情報を伝える優れた手段であり、各種の調査、計画、行政、教育、レクリエーションなど、われわれの活動や日常生活に不可欠のものとなっている。[五條英司]

地図の要素


 地図を構成する共通の要素には、縮尺、地図投影法、図式の三つをあげることができる。[五條英司]
縮尺
実際の地上と比べて長さ(距離)が縮小されている割合を縮尺といい、普通は分子を1とする分数か比の形で示される。分数の値が大きい(分母の値が小さい)ほど、縮尺が大きいという。縮尺は、対象とする地域の大きさ、地図の利用目的などによって決まる。日本の場合、全国を総覧する地図の縮尺としては100万ないし200万分の1、東北・九州といった地方別には50万分の1前後、1府県程度の範囲に対しては20万分の1ぐらいが適している。かなり細部まで詳しく見るためには、5万分の1や2万5000分の1の縮尺が、さらにメートル単位のものまで区別して表すためには、少なくとも5000分の1の縮尺が必要になる。逆に大陸または世界の地図となれば、数千万分の1というきわめて小さい縮尺となる。このように縮尺は多岐にわたる。[五條英司]
地図投影法
地図投影、地図投影法、または地図に関して投影という場合、地球表面の曲面から投影面である地図の曲面(通常は平面で、円筒、円錐(えんすい)などを仲介するものもある)上に作図する方法と、それについての数学理論をさす。個別の地図投影を図法という。地球上の子午線と平行圏を地図上で経線と緯線という。経線のうち、直線で表され、座標値による作図において縦軸になるものを中央経線または中央子午線という。地図の縮尺で距離が正しく表される緯線または経線で、図法の構成に基本的な役割を果たすものを標準緯線または標準経線という。
 地球上の形状を平面の地図に表すとき、投影による投影面の伸縮に伴うひずみが生じる。その内容を地図利用における投影の性質から、長さ(距離)、面積、および方向角(角度)に分けて計量化している。
 地図投影の分類で、投影の性質からは、(1)正距図法(特定の線について、長さのひずみがなく正しく表される)、(2)正積図法(任意の面積のひずみがなく正しく表される)、(3)正角図法(狭い範囲で任意の方向の角度のひずみがなく正しく表される)、(4)その他、に分けられている。
 すべての図法で、地軸に対して、投影軸(円筒または円錐ではそれぞれの曲面の軸、平面ではそれに垂直な直線(法線))が直交する場合は横軸(法)または赤道(法)、斜交する場合は斜軸(法)または地平(法)と、地軸と投影軸との関係を図法名に冠している。両方の軸が一致する本来の正軸(法)または極心(法)の場合は、かならずしもこれを図法名に冠さない。
 投影面からは、(1)方位図法(投影面が平面)、(2)円錐図法(投影面が円錐)、(3)円筒図法(投影面が円筒)、に分かれる。円錐図法と円筒図法は円錐または円筒を仲介し、それを展開するものとも考えられるので、あわせて展開図法という。
 投影の仕方からは投射図法と便宜図法に分けられる。便宜図法のなかには、正軸の場合に緯線が同心円(方位図法)、同心円弧(円錐図法)、または平行直線(円筒図法)になることのほかに、中央経線以外の経線を直線から曲線に変更する、(1)擬方位図法、(2)擬円錐図法、(3)擬円筒図法、がある。
 世界全図の外郭経線を楕円形とするのを、とくに楕円図法(または卵形図法)という。[金澤 敬]
歴史的変遷――古代
ユーラシア大陸の西側の古代ギリシアで、西暦紀元前5世紀にタレスが心射図法を、前240年ごろアポロニオスが正射図法を、そして前2世紀後半にヒッパルコスが平射図法をそれぞれ考案し、日時計の目盛盤または星図に用いた。アポロニオスと同時代人のエラトステネスは球としての地球の円周を測定した有名な史実のほかに、ジブラルタル海峡とロードス島を結ぶ線を横軸、ナイル川中流のシエネ(現在のアスワン)とアレクサンドリアを結ぶ線を縦軸とした座標線網に基づく地中海世界の地図作成方法を述べたことが、西暦紀元前5年ごろに執筆されたストラボンの『地理学』で伝えられている。この地図は後世の推定地図によると、正距円筒図法を用いていたと考えられている。そして緯度を表すために地域ごとの日照時間の違いに基づく気候帯の古代名であるクリマータが用いられた。[金澤 敬]
15世紀以前
西暦紀元1世紀にマリノスMarinus of Tyreが正距円筒図法を考案したことは、2世紀の『プトレマイオス地理学』にマリノス図法として紹介してある。また、この図法にかわるものとして、球面としての世界全体の相対的距離をより正しく表し、球面の丸みをみせるのに適切なものとして、次の2種の図法の作図方法が述べられてあった。一つは、北半球を正距接円錐図法(トレミー図法)と、赤道から南部分を折り返した形にする円錐図法類似のプトレマイオス第1図法、いま一つはボンヌ図法の原形とみなされるプトレマイオス第2図法である。そのほかに、プトレマイオス第3図法として、地球とそれを囲む天球との立体的な関係を表すための斜軸外射図法による作図法も記されてあった。地域図については、正距円筒図法(マリノス図法とも考えられる)の利用が述べられてあり、『プトレマイオス地理学』の13世紀写本(現存最古)に付けられた地図帳の地域図はその方法に基づいている。しかし15世紀写本の地域図では、等脚台形となる多面体図法と正距接円錐図法がある。
 ユーラシア大陸の東側では、中国でプトレマイオスと同時代人の張衡(ちょうこう)が等間隔格子線の座標体系である方格図(正距円筒図法)を禹貢(うこう)(地籍調査)に用いた。3世紀には斐秀(はいしゅう)が禹貢地域図を作成し、その序文のなかに、方格図による官製地図作成の原則としての『制図六体』を述べた。方格図は7世紀初期からの唐時代以降には標準的に用いられ、801年に賈耽(かたん)が作成した『海内華夷図(かいだいかいず)』には方格図の方眼網が描かれていたといわれる。この地図をしのぶものとして、1137年に石刻された『禹跡図』の石碑が西安(せいあん/シーアン)に現在もある。ちなみに、同じ方眼入りの最初の日本全図は、1779年(安永8)に刊行された長久保赤水(せきすい)の『改正日本輿地(よち)路程全図』である。
 なお、13世紀の写本が現存しているポルトラノ海図は、等間隔の正距または緯度が高くなるにつれて緯線間隔を広げた、円筒図法で作図された地図に方位線を表示したもので、経緯線は省かれているか、図郭にその目盛が表示されている。[金澤 敬]
16~17世紀
大航海時代以後、ヨーロッパにおいて地球全域の地理情報が急速に拡大し、印刷術の普及と相まって、ヨーロッパ社会で多くの世界地図と地図帳の出版活動が盛んになった。それらの世界全図には、プトレマイオス第2図法が当初は標準的に用いられた。これの表示範囲を両極地域まで広げたハート形図法は、ドイツのスタプJohann Stab(1460―1522)により考案され、1514年にウェルネルJohannes Werner(1468―1522)が発表した。その3種類の図法のうち2番目のものがスタプ・ウェルネル図法またはウェルネル図法といわれており、1530年にアピアンPeter Apian(1495―1552。別名ビェネビッツBienewitz)が世界全図に用いた。31年にはフランスのフィーヌOronce Fine(1494―1555)が、半球ごとにこの図法で表したものを赤道でつなげて世界全図にした。これは1538年に刊行されたオランダのメルカトルによる世界全図に用いられ、メルカトル複ハート形図法といわれている。また、この地図は北アメリカの地域名を表記した最初の地図でもある。
 1569年刊行の大判世界全体海図『メルカトル世界地図』はメルカトル図法によるもので、当時懸賞問題になっていた遠距離を結ぶ任意の航程線を図上で直線に表す最初の世界全体海図となった。しかし、刊行後、彼の没後もしばらくはむしろ不評であった。メルカトル自身は図解的に作図し、その作成方法は公開しなかったが、30年後の1599年にイギリスのライトEdward Wright(1558―1615)がその作図理論と数表を発表。1646~47年にダッドリーSir Robert Dudley(1574―1649)がこの図法による世界海図帳『海の神秘』をイタリアで刊行してからメルカトル図法とよばれるようになり、それによる海図が普及するようになった。メルカトル没直後の1595年に初版が刊行されたメルカトル地図帳『アトラス』では、横軸平射図法の半球図を並べた世界全図、極心正距方位図法の北極図が注目され好評であった。
 16世紀中期以降、ヨーロッパにおける、低緯度地帯を含むほかの地域への関心と地域情報の拡大に伴い、世界各地の地域図に用いる円錐図法と、世界全図用に用いるすべての緯線を平行直線で表し、中央経線以外の経線を楕円弧で表すさまざまな楕円図法の開発が活発に行われた。16~17世紀はオランダ地図企業の黄金時代で、オルテリウスが1570年に刊行した地図帳『世界劇場』(世界の舞台、地球の舞台ともいう)の世界全図は好評であり、図法は擬円筒図法の一種である、緯線が等間隔の平行直線に作図される正距楕円図法を用いていた。同じく擬円筒図法の一種として知られるサンソン図法は、1570年フランスのコシンJean Cossinが海図型世界全図に用い、また1606年版メルカトル地図帳のアフリカ図にすでに用いられていた。しかしサンソン図法(別名サンソン・フラムスティード図法)とよばれるようになったのは、1650年にフランスのサンソンNicholas Sanson(1600―67)が大陸図に、そして1729年にイギリスのフラムスティードが星図にもっぱら用いてからであった。[金澤 敬]
18世紀以降
ボンヌ図法は、18世紀にフランスでプトレマイオス第2図法に由来する正積擬円錐図法の数学理論をボンヌRigobert Bonne(1727―95)が完成し、1752年にフランス沿岸海図帳に用いた。またドリールJoseph Nicolas De l'Isle(1688―1768)はプトレマイオス第1図法に基づく2基本緯線正距円錐図法を考案し、もっぱら地域図に用いて、ドリール図法といわれるようになった。
 統一規格の切図様式によるフランス最初の国土基本図作成は、三角測量による基準点測量から着手する現代の地形図作成のはしりであるが、17世紀中期からカッシーニCassini家4代による100年以上継続した事業となり、1793年に全土を覆う182図葉が完成した。これに用いた測量座標系は横軸正距円筒図法であり、その後カッシーニ図法とよばれている。
 後の19世紀から20世紀初期にかけて行われたプロシア全土の地形図作成には、多面体図法が用いられた。これは『プトレマイオス地図帳』地域図の図法であり、20世紀前半まで世界の地形図の標準図法となった。
 一方、1772年にドイツのランベルトJohann Heinrich Lambert(1728―77)が発表した横軸正角円筒図法は球からの横メルカトル図法である。後にガウスが回転楕円体から特別な球への正角図法を考案し、その球から平面への横メルカトル図法に相当するガウス座標でハノーバーの基準点測量を行った。この方法はハノーバー測量局長シュライバーOskar Schreiberによってプロシアの基準点座標系にも用いられ、ガウス正角二重図法として、20世紀前半にいたる各国の基準点座標系の標準となった。
 回転楕円体の横メルカトル図法となるTM図法またはガウス・クリューゲル図法(単に横メルカトル図法ともいう)は、回転楕円体から地球儀の子午線帯に相当する平面上の経度帯への正角図法である。クリューゲルLouis Krgerがガウスの遺稿メモ書きを整理して遺稿ノートの形で発表してから、それを発展させて体系と数表にまとめて1912年と19年に発表した。これが第一次世界大戦後のドイツの国土基本図に用いられ、さらに第二次世界大戦末期にはTM図法に基づくユニバーサル横メルカトル図法(UTM図法)が戦場地形図に用いられたことから、日本を含む戦後の各国で地形図の標準的図法として普及した。[金澤 敬]
現代数学の手法の導入
19世紀から20世紀にかけて、地図投影に対して数学者の関心が集まり、1887年にフランスのティソーNicolas Augusto Tissot(1824―97)が、投影のひずみの図形表示の基礎となる指示楕円(ティソーの指示楕円、ティソー標形ともいう)を発表し、近代数学による地図投影の数学理論基本体系をまとめた。
 世界全図の図法について、さまざまな正積楕円図法が開発され、1805年にモルワイデKarl Brandon Mollweide(1774―1825)がモルワイデ図法を、1906年にエケルトMax Eckert(1868―1938)がエケルト図法を発表した。
 また、さまざまな変更、変形および合成の方法も考えられ、たとえば、1892年にハンメルErnst von Hammer(1858―1925)がエイトフ変換によるハンメル図法を発表し、合成図法では1921年にビンケルOswald Winkel(1873―1953)がビンケル図法を、23年にグードJohn Paul Goode(1862―1932)がホモロサイン図法とさらにその変形である断裂グード図法を発表した。図法の計算式にいくつかの任意定数を組み込む変更も考えられ、とくに1942年に発表されたミラーOsborn Maitland Miller(1897―1979)の変更メルカトル図法(ミラー図法の名称で定着)が有名である。
 20世紀後半には、コンピュータの支援による投影計算と作図自動化が実用化し、投影軸の変更によって、さまざまな世界全図や大陸ごとの地域図がつくられるようになった。その一つとして1948年のバーソロミュー地図帳の西経30度経線を楕円の長軸、地図の中心を北緯45度、西経30度とした斜軸モルワイデ図法でアトランティス図法と命名したものがある。
 図法設計の新しい方法として、20世紀中期までの数学に基づく発想から離れて、利用者の好ましさといった感覚的なデザイン要素を具象化した成果があり、74年にロビンソンArthur H. Robinson(1915― )が世界全図の新しい図法を発表した。これはその後にロビンソン図法と命名され、ナショナル・ジオグラフィック協会の公式世界全図の図法となった。
 また人工衛星画像の実用化に伴い、古典的な外射図法を見直し、投影面の位置を変える一般化外射図法も開発された。人工衛星の地上における軌跡を正確に作図できる宇宙斜軸メルカトル図法は、コルボコレッセスAlden P. Colvocoresses(1918― )が1974年に提案し、スナイダーJohn P. Snyder(1926―97)が78年に完成した。これは地上における軌跡の接線曲面を投影面とした正角図法で、静止軌道の場合は斜軸メルカトル図法となる。[金澤 敬]
図式
地図の投影法、規格、精度、ならびに表示する事項の種類、それぞれの記号とその表示法など、地図を描く場合のいっさいの約束を図式というが、狭義には後者の記号に関する約束をさすことが多い。図式は、地図の作成に際して不可欠であるとともに、地図利用者にとっても、地図を有効、適切に利用するためによく理解しておかねばならない。
 狭義の図式には、表示する対象物の種類ごとに、記号の形、大きさ、線の太さ、色や記号を表示する位置、向き、配列などが定められている。また、縮尺に応じた表示事項の取捨選択、細かく表示できないものの総描(総合描示)の仕方、図上で接着してしまう場合の転位の原則などが規定される。さらに、地名などの文字については、対象物に応じて書体、字大(じだい)、字形(直立体、傾斜体など)、文字の間隔、配列方向、名称の表示位置などが決められている。
 国土地理院発行の縮尺2万5000分の1や5万分の1の地形図の場合、図式は明治以来何回も改訂されている。
 図式は、地図の目的のほかに縮尺によっても異なってくる。たとえば、道路は5000分の1以上の縮尺ならば、ほとんどが実際の幅を縮尺化した幅の記号で描き分けられるが、2万5000分の1となると、実際の幅を階級区分して、それぞれを所定の(縮尺化したものよりも拡大された幅の)記号で表示するようになり、同時に取捨選択、総描、転位などの手法が必要になる。このような手法は、さらに縮尺が小さくなるほど大幅に行われるようになる。[五條英司]

地図の種類


 地図の種類はきわめて多様であるが、これをいろいろな観点から分類することができる。[五條英司]
一般図と主題図
まず、地図の内容ないし利用目的から、一般図と主題図に大別できる。[五條英司]
一般図
土地の高低、起伏、水系、植生、土地利用状況、交通路、集落や各種の工作物など、地表面の自然物、人工物のすべてのものをまんべんなく表現した地図で、多目的に広く利用される。国土地理院発行の縮尺2万5000分の1や5万分の1の地形図は基本図といわれる。また20万分の1の地勢図、50万分の1の地方図、100万分の1の国際図(日本)なども全国土をカバーしている。同院ではまた、大都市地域の1万分の1の地形図や、都市部を中心とした2500分の1や5000分の1の地形図(国土基本図)も発行している。このほか、地方公共団体などが計画用につくっている2500分の1などの地形図や、市販の地図帳の主要部分も一般図に属する。[五條英司]
主題図
特定の主題について専門的に表した地図で、多くは同じ縮尺の一般図を土台にして作成される。国土地理院の土地利用図、土地条件図、沿岸海域土地条件図、湖沼図、ナショナル・アトラス、海上保安庁海洋情報部(旧水路部)の海図、海の基本図、航空図、産業技術総合研究所地質調査総合センターの地質図、国土交通省土地・水資源局の地籍図、農水省の土壌図、環境省の現存植生図、気象庁の気候図、天気図などは、国の機関が作成(または管理)する主題図のおもなものである。このほか、国や地方の機関で作成される各種の計画図や、民間から発行されているレクリエーション用の地図、道路地図、住宅地図なども主題図である。[五條英司]
縮尺による分類
地図の縮尺の面からは、日本では、1万分の1以上の縮尺を大縮尺、1万分の1から10万分の1までを中縮尺、10万分の1以下を小縮尺とよんでいる。しかし、この区分は固定したものではなく、その国の地図整備状況により、また時代によって違いがある。なお、地形図という呼称は、中縮尺および大縮尺の一般図に対して使われる。[五條英司]
実測図と編集図
地図はまた、作成方法によって実測図と編集図に分けられる。実測図は、空中写真からの図化や地上での測量・調査によって直接作成される地図であり、これに対して編集図は、既存の地図や各種の資料から編集してつくられる。一般に、縮尺の大きい一般図は実測図であり、縮尺のより小さい一般図は編集図である。国土地理院の国土基本図や2万5000分の1の地形図は実測図であるが、5万分の1の地形図は2万5000分の1の地形図から、20万分の1の地勢図は5万分の1の地形図から編集される。一方、主題図には、統計資料などをもとに作成される編集図が多いが、地形分類図、土地条件図、地質図、土壌図、植生図、土地利用図、海図などのうち縮尺の大きい地図や、地籍図は、実測図といえる。地図の編集に際して縮尺の変更を伴うときは、投影法や図式も変更されるのが普通である。[五條英司]
その他の分類
地図は、普通は1枚のシートになっているが、多くの地図を集めて本にしたアトラス(地図帳)や、教育用の掛図(かけず)、折り畳み地図などの形をとったものもある。アトラスには、一国の自然、経済、社会、文化などに関する地図を集大成したナショナル・アトラスのほか、地質、気候、道路などの主題別のアトラスや、世界地図帳、分県地図帳、社会科地図帳などがある。市販の市街図などには折り畳み式でカバーをつけたものが多い。
 また、特殊な地図としては、地球儀のほか、写真図(写真地図)、レリーフ・マップ(立体地図)、触地図などがある。写真図は、空中写真像を土台にしたもの、レリーフ・マップは地表面の起伏を実際の凸凹で表したものであり、触地図は図形や文字を紙面より突出させた、視覚障害者のための地図である。[五條英司]

地図の作成工程


地形図の作成
一般図のうち、ここでは実測図である地形図の作成工程について述べる。地形図をつくるためには、三角測量で水平位置が決められた三角点と、水準測量で標高が決められた水準点とが骨組みになる。これらの基準点をもとにして、地表面の高低、起伏の状態や、その上にある自然物、人工物の位置を測り、地図に描き表す作業を地形測量という。地形測量の方法は、かつては平板測量のみであったが、現在では大部分が写真測量にかわった。平板測量では、三脚のついた平板上に、基準となる点数点をプロットした図紙を固定し、現地でこれを正しい方位に水平に置き、アリダードalidadeという器械を用いて目標物への方向線の交わりや、測定した距離から、次々と必要な地点の位置を図解的に求めて、地形図の原図を描いていく。高低、起伏については、普通は尾根や谷の線を測って描くとともに、その線上のおもな点の高さを求め、これらを基準として等高線の通過する点の位置を求める。平板測量は、現在は500分の1などのとくに大縮尺の地形図の作成や、小規模の測量に用いられている。
 写真測量は、空中写真からの図化を主体とするもので、平板測量に比べて高価な設備を要するが、能率的に、精度の一様な地形図をつくることができる。空中写真は、普通、東西の飛行コースに沿い、東西方向に隣接する写真とは約60%、隣接コースの写真とは約30%重複するようにして連続撮影される。また、地上の基準点が空中写真上で同定(確認)できるようにするため、撮影前に基準点にあらかじめ白い板などでつくった対空標識を設置するか、撮影後に写真を現地に携行して、その上に基準点の位置を刺針する。隣り合った一対の空中写真のポジフィルムを図化機に正しくセットし、それに光線を当てると、地表面の実体模像が観察される。この模像表面の物体に沿うように視野の中の測標とよばれる点を動かすと、自動的に図が描かれる仕組みになっている。一方、人工物の種類、名称や地名、空中写真で判読できない事項などについては、現地調査が行われる。図化された素図と現地調査の結果から、地形図の原図がまとめられる。
 地図の原図は、所定の図式に従って製図される。製図作業は、従来はペンや烏口(からすぐち)を使って着墨する方法であったが、現在ではスクライブ法とよばれる方法が主流となっている。この方法は、伸縮のごく少ないポリエステル・ベースに遮光膜を塗布したものの上で、焼き付けられた原図の画線に沿って特殊な針で膜を削るもので、色版別にネガの形で成果が得られる。地図の文字の版は、写真植字された薄いフィルムを透明ベースの所定位置に貼(は)って、ポジの形で作成される。また、網点で印刷される版については、網のかかる部分だけ窓をあけたマスク版を作成し、製版時に網スクリーンとよばれるネガと重ねられる。これらの製図成果から、アルミ版に製版し、地図が印刷される。[五條英司]
主題図の作成
製図以降の工程については地形図の場合と大差ないので、ここでは主題図の原図作成までの工程を述べる。地形分類図、地質図、土壌図、植生図、土地利用図などで実測図にあたるものについては、それぞれに必要な現地調査を行うとともに、空中写真判読を併用して地表面を区分し、ベースとなる地形図上に分類表示する。湖沼図や海図は、音響測深や採泥調査などの結果から作成される。これらの主題図はまた、より縮尺の小さい地図に編集される。一方、量的な分布を示す主題図は、統計数値などをもととして編集されるが、この場合、主題や資料の性格などによって、コロプレス地図、等値線図、ドット・マップ、流線図などの表現方法が選ばれる。[五條英司]
コンピュータの利用
地図の作成、利用の新しい分野として、本来の地図とは別に、その地理的な情報を数値化あるいは符号化して、コンピュータで処理できるように、磁気テープなどに収録することが盛んに行われている。地理的な情報には、地点の標高、公共施設の配置といった点情報、河川や道路のような線情報、それに平均標高、土地利用などの面情報がある。それらの数値化、符号化は、既存の地図からの計測で行うのが普通である。また、位置については、点情報は座標で、線情報は近似化された多くの線分の角の座標で示されるが、面情報に対しては、単位区域を設定する必要がある。このためには、通常、メッシュ(方眼)が用いられるが、全国土を連続的に覆うものとして、標準地域メッシュとそのコードが定められている(昭和48年行政管理庁告示)。このうち、2万5000分の1の地形図の縦・横を各10等分する経緯線網(1区画は約1平方キロメートル)を基準メッシュとよんでいる。
 このような数値情報の代表例として、国土地理院で整備された国土数値情報がある。そこでは、標高、起伏量、地形分類、表層地質、土壌、谷密度(谷の本数)、河川、流域、行政界、開発や保全に関する指定地域、文化財、土地利用、道路、鉄道、公共施設、公示地価などの情報が、基準メッシュごとに記録され、点情報、線情報については基準メッシュと関連づけられるようになっている。総務省統計局では、基準メッシュに基づいた人口などの統計を整備している。
 数値情報から、コンピュータを利用して直接に、または加工して、いわゆる数値地図を自動的に作成することができる。この場合、メッシュを単位区域とする分布図だけでなく、公共施設の分布、河川水系といった点や線の地図をつくることもできる。また、平面の地図以外に立体地図や地形断面図などの作成、行政区画や流域ごとのデータの集計、あるいはデータの組合せによる地域の解析、評価を行うことも可能である。
 このほかにも、メッシュのかわりに街区あるいは等質の地域ごとに、境界線とその属性を入力して、それから地域の分析、評価のための地図を作成することもできる。一方、コロプレス地図などの分布図を作成する場合に、従来の製図工程にかわって、原図の色彩を自動的に判別し、製版用のフィルムを作成することや、多くの点情報から等値線図を自動作成することなども実用化されている。[五條英司]

地図の歴史


 地図の歴史は、文字などのなかった人類文化の初期にさかのぼるといわれる。[五條英司]
世界の地図
紀元前3000年ごろから世界で最初に文明が栄えたバビロニアでは、粘土板に刻まれた地図が発見され、現在、イギリスの大英博物館に所蔵されている。また、紀元前2400年ごろにパピルスという草からつくった紙に描かれたエジプトの金山の地図なども現存する。
 古代ギリシアの初期には、世界は円盤状で、オケアノスとよばれる大洋に取り囲まれていると考えられていたが、アリストテレスは地球が球形をなすことを科学的に証明し、エラトステネスは地球の円周を初めて測定したことで知られる。また、プトレマイオスは、紀元後150年ごろ、世界中の都市の位置の経緯度を集大成した『プトレマイオス地理学』と『世界図』を完成した。これは科学的地図の源として、地図学史の第一次革命の成果といわれる。
 中世のヨーロッパでは、神学がすべての学問を支配し、世界はふたたび円盤とみなされた。この考えを端的に表したのがいわゆるTO地図で、円形にオケアノスという大河に取り囲まれた陸地の上半分がアジア、下半分は地中海を境として左側がヨーロッパ、右側がアフリカとなっていた。中世の後半に入ると、十字軍の遠征を機に、地中海を中心とする交通が盛んになり、13世紀ごろから、ポルトラノ海図がつくられるようになった。これは、地図の各所に分度円を描き、その中心から目的の港への方位線を放射状に引いたものである。十字軍の失敗により教会の勢力が失墜すると、ようやくギリシア・ローマ時代の科学の成果がヨーロッパに復活し、15世紀には、『プトレマイオス地理学』と『世界図』がイタリアで印刷された。
 15世紀末からの大航海時代に、世界の水陸分布の知識はしだいに正確なものになった。印刷術の進歩とともに、世界地図が多く出版されるようになり、ベルギーのオルテリウスは初めて銅版による近代的な世界地図をつくり、オランダのメルカトルは1569年の世界地図で、いわゆるメルカトル図法を採用した。18世紀後半にイギリスのクックの探検によって、南半球の大部分が海であることが判明し、ほぼ完全な世界地図が成立するに至った。
 一方、オランダのスネルは、1617年、アルクマール(オランダ)とベルゲン(ノルウェー)の間で初めて三角測量を行い、科学的な測量に基づく精密な地図作成の道を開いた。フランスでは、18世紀末に、カッシーニ一族の努力によって、三角測量に基づく全土の8万6400分の1の地図が完成された。イギリス、ドイツ、デンマークなどでも、18世紀末から19世紀にかけて相次いで本格的な三角測量を始め、科学的な地図が作成されるようになった。[五條英司]
日本の地図
日本における地図作成の最古の記録としては、『日本書紀』に、646年(大化2)、諸国をしておのおのその境界を調べ、これを図にして提出させたとある。684年(天武天皇13)には、朝廷から派遣された使臣らが信濃(しなの)国図をつくり、これを呈上した。さらに『続日本紀(しょくにほんぎ)』には、738年(天平10)、諸国に命じて国郡(くにこおり)の図をつくらせたという記事がある。このようにして諸国の地図ができ、他方では条里制、班田法に伴い、田図(でんず)などがつくられたと考えられる。現存する最古の地図としては、正倉院宝物のなかに、751年(天平勝宝3)の東大寺領近江(おうみ)国水沼村墾田(こんでん)図などがある。奈良時代に僧行基(ぎょうき)がつくったと伝えられ、最古の日本全図といわれる行基図は、国界のみの簡略な日本全図に対する、後世における総称である。行基図とよばれる地図と同じ形式の地図は江戸時代までつくられ、日本全図の基になっていた。この形の地図には、山城(やましろ)国(現在の京都府南部)を中心として五畿(ごき)七道の経路が表され、これに諸国の位置と名称が記された。
 江戸時代の初期に、幕府は各藩に命じて国絵図(くにえず)をつくらせた。これには、正保(しょうほう)年間(1644~48)の正保図、元禄(げんろく)年間(1688~1704)の元禄図などがあり、縮尺はいずれも1里6寸(2万1600分の1)である。建部賢弘(たけべかたひろ)はこれらの国絵図を総合して『享保日本総図』を作成、さらに水戸の長久保赤水(せきすい)は、1779年(安永8)、10里1寸(129万6000分の1)の『改正日本輿地(よち)路程全図』を発行した。この地図は1774年の『日本輿地路程全図』を改定して出版したもので、経緯線が入っている点で画期的であった。
 近代的測量に基づく日本地図の作成は、いうまでもなく伊能忠敬(いのうただたか)に始まる。忠敬は、1794年(寛政6)に家業から隠居し、翌年佐原(千葉県)から江戸に出て、天文方高橋至時(よしとき)の門に入り、暦法や測量術を学んだ。1800年まず北海道と奥州街道を実測したのち、幕命を受けて翌1801年(享和1)から1814年(文化11)までかかって、全国の沿岸および主要な街道筋の測量を完了し、さらに翌1815年には江戸府内を測量した。彼の測量は、距離と水平角の測定を主体とするいわゆる道線法が主体で、必要な地点で樹木や塔などの目標物をねらって位置を点検するための交会(こうかい)法を用いるものであった。忠敬は1818年(文政1)に没したが、高橋至時の子景保(かげやす)が中心となって、1821年にその成果である『大日本沿海輿地全図』を完成させた。忠敬の地図は、大図(3万6000分の1)、中図(21万6000分の1)、小図(43万2000分の1)の3種類からなり、明治に入ってからも官製地図の根拠となった。
 明治になって、測量および地図作成の事業は政府機関が中心になって行うことになった。明治の初年、内務省(当初は工部省)はイギリス人やフランス人の指導で測量、地図作成を始め、続いて陸軍も測量に着手した。内務省では、全国の三角測量を開始するとともに、600分の1の地籍図(字限図(あざきりず))や5000分の1の市街図などをつくり、陸軍は1万分の1図に続いて、1880年(明治13)からいわゆる迅速2万分の1図、1885年からは正式2万分の1図の作成を始めた。また1884年に、内務省の測量事業は陸軍に吸収されて、参謀本部測量局となり、さらに1888年に参謀本部陸地測量部に改称した。陸地測量部は、1892年から1924年(大正13)までかかって、全国の5万分の1の地形図を完成した。また、2万分の1にかえて整備することになった2万5000分の1の地形図は、1938年(昭和13)までに、平野部を主に、国土の約4分の1にあたる1100面余りが作成された。
 海部については、1871年(明治4)に創設された海軍水路局が沿岸、港湾、近海の海図の作成を進めた。第二次世界大戦後の1948年(昭和23)以降は、陸地測量部および海軍水路局の業務を引き継いだ建設省(現国土交通省)国土地理院、海上保安庁水路部(現海洋情報部)を中心に、地図作成事業は主題図の分野を含めて、目覚ましい発展を示している。[五條英司]
『織田武雄著『地図の歴史』(1973・講談社) ▽岩田豊樹著『古地図の知識100』(1977・新人物往来社) ▽野村正七著『地図投影法』(1983・日本地図センター) ▽A・H・ロビンソン他著、永井信夫訳『地図学の基礎』(1984・地図情報センター) ▽海野一隆著『ちずのしわ』(1985・雄松堂出版) ▽プトレマイオス著、中務哲郎訳『プトレマイオス地理学』(1986・東海大学出版会) ▽高崎正義編『総観地理学講座3 地図学』(1988・朝倉書店) ▽ジョン・ノーブル・ウィルフォード著、鈴木主税訳『地図を作った人びと――古代から現代にいたる地図製作の偉大な物語』(1988・河出書房新社) ▽中村和郎・高橋伸夫編『地理学講座1 地理学への招待』(1988・古今書院) ▽日本地誌研究所編『地理学辞典』改訂版(1989・二宮書店) ▽日本測量調査技術協会編『ディジタルマッピング』(1989・鹿島出版会) ▽日本地図センター編・刊『数値地図ユーザーズガイド』(1992) ▽矢守一彦著『古地図への旅』(1992・朝日新聞社) ▽沓名景義・坂戸直輝著『海図の知識』新訂版(1994・成山堂書店) ▽マーク・モンモニア著、渡辺潤訳『地図は嘘つきである』(1995・晶文社) ▽若林幹夫著『地図の想像力』(1995・講談社選書メチエ) ▽J. C. Muller編、海外技術動向調査小委員会訳『現代地図学の先端』(1996・日本地図調製業協会) ▽山と地図のフォーラム編著『パソコンで楽しむ山と地図 マルチメディアの山旅』(1997・実業之日本社) ▽C・クーマン著、船越昭生監修、長谷川孝治訳『近代地図帳の誕生――アブラハム・オルテリウスと「世界の舞台」の歴史』(1997・臨川書店) ▽日本国際地図学会編『地図学用語辞典』増補改訂版(1998・技報堂出版) ▽織田武雄著『古地図の博物誌』(1998・古今書院) ▽海野一隆著『地図に見る日本――倭国・ジパング・大日本』(1999・大修館書店) ▽三好唯義編『図説 世界古地図コレクション』(1999・河出書房新社) ▽田代博・星野朗編著『地図のことがわかる事典』(2000・日本実業出版社) ▽ジェレミー・ブラック著、関口篤訳『地図の政治学』(2001・青土社) ▽ノーマン・J・W・スロワー著、日本国際地図学会監訳『地図と文明――地図と歩んだ人びとの歴史』(2003・表現研究所) ▽海野一隆著『地図の文化史――世界と日本』新装版(2004・八坂書房) ▽織田武雄著『地図の歴史』日本篇・世界篇(講談社現代新書) ▽マイルズ・ハーベイ著、島田三蔵訳『古地図に魅せられた男』(文春文庫) ▽日本地図センター編・刊『地図ニュース』(月刊) ▽日本国際地図学会編・刊『地図』(季刊) ▽地図情報センター編・刊『地図情報』(季刊)』

出典|小学館 日本大百科全書(ニッポニカ) この辞書の凡例を見る
(C)Shogakukan Inc.
それぞれの解説は執筆時点のもので、常に最新の内容であることを保証するものではありません。

図書館情報学用語辞典の解説

地図

地球もしくは他の天体(例:月)の表面または関連する面(例:大気圏面,表層下の地層面)の全面または部分について,事象を選び(例:地形,植生),象徴化し(例:色分け,記号化),一定に縮尺し,平面(二次元)に表現したもの.媒体は紙や布などに限らず,電子メディアに情報を入力し,再生装置で表示するものを含む.球面(あるいは回転楕円体)を平面に投影するので,投影法が重要である.方位を正確に示す円筒図法では距離や面積が不正確になり,面積を極似させる投影法では方位が乱れる.それゆえ近代地図では,方位,縮尺,投影法を明示することが必須となる.天球儀地球儀地形模型など三次元に表現したものは地図資料に包含されるが,地図ではない.

出典|図書館情報学用語辞典 第4版
©All Rights Reserved, Copyright Nihon Toshokan Joho Gakkai, 2013 編者:日本図書館情報学会用語辞典編集委員会 編
それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。

世界大百科事典内の地図の言及

【絵図】より

…19世紀(明治前期)以前の日本での普通の地図に対する呼称。そもそもは条里制施行時代,農地の状態を表した図に〈田図〉〈文図〉があったが,条里名称などを注記した方格のみの〈田図〉を〈白図〉と呼び,方格のほか山川,湖海,道路,家屋など地形・地物を記入した〈田図〉を,〈白図〉と区別して〈絵図〉と呼んだようである。…

※「地図」について言及している用語解説の一部を掲載しています。

出典|株式会社日立ソリューションズ・クリエイト
All Rights Reserved. Copyright (C) 2015, Hitachi Solutions Create,Ltd. 収録データは1998年10月に編集製作されたものです。それぞれの用語は執筆時点での最新のもので、常に最新の内容であることを保証するものではありません。また、本文中の図・表・イラストはご提供しておりません。

地図の関連キーワード緯度義肢可動堰トラックシステム除き高免租戻し税半影月食トンスラ脱落症状

今日のキーワード

トランスアジア航空

台湾・台北市に本拠を置く航空会社。中国語名は復興航空。1951年、台湾初の民間航空会社として設立。83年に台湾の国産実業グループに経営移管され、組織改編を実施した。92年に国際チャーター便の運航を始め...

続きを読む

コトバンク for iPhone

地図の関連情報