マンセル表色系では三属性をHV/Cの形式で組み合わせたマンセル記号を用いて色を表示する。この表色系は1958年に、色を三属性で表示する標準システムとして日本工業規格で採用され、「JIS Z 8721:1958 三属性による色の表示方法」が制定された。その後、1964年、1977年、1993年に改正されており、現行規格は「JIS Z 8721:1993 色の表示方法――三属性による表示」である。現在、日本規格協会から発行されているJIS標準色票はこの現行規格に準拠する色票集であり、マンセル表示に対応する色票を三属性に基づいて系統的に配置する方法で編集されている。
補助イルミナントC(以前は標準の光Cとよばれていた。日本工業規格「JIS Z 8720:2000 測色用標準イルミナント(標準の光)及び標準光源」参照)の下で、試料の色をJIS標準色票と見比べることにより、その色のマンセル表示を定めることができる。たとえば、5GY 4/4は木の葉の緑をマンセル記号で表示した例である。色の見えの一致する色票が見いだせない場合は、補間または補外の方法によって定める。JIS標準色票を用いてマンセル表示を定める方法の詳細はこの色票集に付属する解説に記載されている。
XYZ表色系では三刺激値(X, Y, Z)、あるいは三刺激値Yと色度座標x、yとを組み合わせた(Y, x, y)を用いて色を表示する。ここで、x=X/(X+Y+Z), y=Y/(X+Y+Z), z=Z/(X+Y+Z)の関係があることから、前者と後者は等価な表示である。
試料の三刺激値は分光測色法に基づき、試料色刺激の分光分布から計算によって定める。三刺激値を定める方法は日本工業規格「JIS Z 8701:1999 色の表示方法――XYZ表色系及びX10Y10Z10表色系」において厳密に規定されている。なお、拡散反射面の三刺激値は試料の分光反射特性のほか、照明光の分光特性にも依存する。照明光を異なる分光分布のものに変えると同一試料の三刺激値が変化し、色の見えも変わる。
『藤井良三著『色素細胞』(1976・東京大学出版会)』▽『フォン・フリッシュ著、木下治雄監訳『ミツバチとの対話』(1979・東京図書)』▽『江森康文他編『色――その科学と文化』(1979・朝倉書店)』▽『市川宏編集・企画『眼科MOOK16 色覚異常』(1982・金原出版)』▽『日高敏隆著『動物の体色』(1983・東京大学出版会)』▽『日本色彩学会編『色彩科学事典』(1991・朝倉書店)』▽『池田光男・芦沢昌子著『どうして色は見えるのか――色彩の科学と色覚』(1992・平凡社)』▽『ジュール・ダビドフ著、金子隆芳訳『色彩の認知新論』(1993・マグロウヒル出版)』▽『『JIS Z 8721:1993 色の表示方法――三属性による表示』(1993・日本規格協会)』▽『金子隆芳著『色の科学――その心理と生理と物理』(1995・朝倉書店)』▽『日本色彩学会編『新編色彩科学ハンドブック』第2版(1998・東京大学出版会)』▽『飛田満彦著『色彩科学――色素の色と化学構造』(1998・丸善)』▽『内川恵二著『色覚のメカニズム――色を見る仕組み』(1998・朝倉書店)』▽『中原勝儼著『色の科学』改訂版(1999・培風館)』▽『『JIS Z 8701:1999 色の表示方法――XYZ表色系及びX10Y10Z10表色系』(1999・日本規格協会)』▽『『JIS Z 8720:2000 測色用標準イルミナント(標準の光)及び標準光源』(2000・日本規格協会)』▽『日本比較生理生化学会・寺北明久・蟻川謙太郎編『見える光、見えない光――動物の多様な生き方1動物と光のかかわり』(2009・共立出版)』▽『金子隆芳著『色彩の科学』(岩波新書)』
【色の基礎】 ヒトに光として知覚されるのは約380~760nmの波長の電磁波であり(20ページ図2),特定の波長の光だけを取り出してみると,その光は色づいて見える。ごく狭い範囲の波長のみを含む光を単色光monochromatic light,もしくはスペクトル光spectral lightとよぶ。単色光の色は波長に応じて変わり,短波長から長波長に向かって,すみれ→青→青緑→緑→黄緑→黄→橙→赤という連続的な変化をたどる。青色に見える短波長光と赤色に見える長波長光とでは光の波長のみが異なるが,感じられる色は青と赤というように質的に異なる。このことは,色が光の属性ではなく感覚であることを端的に示している。光の波長と色はある程度対応するため,ある光にどの波長光がどれだけ含まれているかによって,光に対して感じる色は変わる。波長の関数として光の強度を示したものを,分光強度分布spectral power distribution,あるいは分光エネルギー分布spectral energy distributionといい,これによって色に関する光の特性は記述できる。たとえば,図1の⒜に示した照明光(白熱電灯)は長波長領域のエネルギーが強く,橙色がかった光となる。
色は,ピーマンの緑色のように物体表面に張り付いているかのように見える場合や,青空の青のようにどこに色が付いているのか位置関係がはっきりしないように見える場合など,さまざまな現われ方をする。こうした色の見え方の違いを,色の見えのモードmode of color appearanceの違いという。これまでさまざまな分類がなされているが,量も単純な分類としては,物体色モードと光源色モードに分ける。物体色モードobject color modeとは,ピーマンの例のように物体表面に色が付いているように見え,物体表面の属性として知覚される場合の色の見え方を指す。これに対して光源色モードlight source color modeとは,自ら発光しているように知覚される場合の色の見え方を指す。色の見えのモードは,通常は,実際に対象が光を発しているか反射しているかによって決まるが,物理的な条件ではなく観察条件によって決まることもある。たとえば,実際には色紙が光を反射している場合でも,暗黒中に単独で配置されると光源色モードとして発光して知覚される。逆に,カラーテレビの画面のように実際に発光している場合でも,周囲にさまざまな明るさや色の対象があると,物体色モードとして見える。色の見えのモードによって,色の広がり方や定位の明確さなどといった属性も変化するが,感じられる色そのものも変わる。たとえば,茶色や金色,銀色は物体色モードに特有の色であり,光源色モードで知覚されることはない。
【色覚理論theory of color vision】 色刺激が視覚系でどのように処理されるかを説明する伝統的な色覚理論としては,三色説と反対色説を挙げることができる。
三色説trichromatic theoryとは,3種類の光受容器の応答の組み合わせにより色の感覚を説明する色覚理論であり,19世紀初頭にヤングYoung,T.が提唱し,19世紀後半にヘルムホルツHelmholtz,H.L.F.vonが発展させ体系化した。三色説は,加法混色による等色実験に基礎をおく。加法混色additive color mixtureとは,複数の光を足し合わせる操作を指し,足し合わせる光を原刺激primary stimulusという。加法混色において各原刺激の割合を調整すると,別の光(検査光)の色と見かけ上は等しくすることができる。この操作を等色color matchingという。この際,混色光と検査光の分光強度分布は物理的に異なっているが,見かけ上は区別できなくなる。こうした等色を条件等色metameric color matchという。等色実験により,互いに独立な原刺激が3種類あれば,それらの加法混色により,任意の光と等色できることがわかっており,これを色覚の三色性trichromacyという。互いに独立とは,二つの原刺激の混色により残りの一つと等色できないことを指す。三色説によれば,色光は3種類の光受容器をある割合で応答させ,この応答の割合の違いにより色光の色が区別される。このため,たとえ物理的には異なる光であっても,光受容器に生じる応答が等しければ区別することができない。条件等色が生じるのは,このためである。
三色説と反対色説は,当初は互いに対立する理論として優劣を競い合っていたが,その後の研究によりそれぞれの妥当性を示す証拠が示され,現在では段階説として統合されている。段階説stage theory of color visionとは,色覚を階層的処理によって説明する理論であり,現在のすべての色覚モデルはこの立場を取っている。図4は段階説の概要を示す。色刺激を処理する最初の段階は,光の受容を行なう錐体過程であり,ここでは三色説的な処理が行なわれる。錐体は,光を吸収してそれを神経信号へと変換する形で応答する。多くのヒトの眼には錐体が3種類存在し,どの波長領域に対して最も感度が良いかに応じてS錐体,M錐体,L錐体とよばれている。光が眼に届くと,各錐体の感度に応じて異なる強度の応答が生じる(図5)。
一般色覚者であっても,条件によっては色覚が制限される。視細胞のうち桿体は1種類しかないため,桿体のみが働く暗所では,だれでも分光強度分布の違いを色の違いとして区別できない。また,視野周辺部では色を見分けることはできなくなる。視野内で色を見分けることができる範囲を色視野color zoneとよぶが,色によって広さが異なり,赤,緑よりも,黄,青の方が広い。中心窩のさらに内側の中心小窩とよばれる領域(視角約20′)にはS錐体が存在しない。そこでの色覚を微小領域3型二色覚small field tritanopiaという。
以上のようにヒトの色覚型は多様であり,あるヒトには見分けられる色の違いが別のヒトには区別できないといったことが起こる。このため,すべてのヒトに情報が適切に伝わるように配慮した視環境を構築し,色彩設計を行なうことが望まれる。こうした利用者の側に立ったデザインを,ユニバーサルカラーデザインuniversal color designという。具体的には,できるだけ多くのヒトが見分けることのできる配色を選ぶこと,色の違いだけでなく,記号や文字,形など他の視覚情報を同時に用いることなどが重要となる。
【表色系color specification system】 色を定量的に示す体系である表色系は,色の見えに基づく顕色系color appearance systemと,等色実験に基づく混色系color mixing systemとに分けられる。前者の代表例がマンセル表色系であり,後者の例が国際照明委員会Commission Internationale de l'Eclairage(CIE)により定められたXYZ表色系である。マンセル表色系Munsell color notation systemは,マンセルMunsell,A.H.が自らの観察を基に色の見えを体系化したのが始まりである。その後,アメリカ光学会によって,実験結果に基づいて修正された。これを修正マンセル表色系というが,「修正」を付けずによばれることも多い。図6の⒜のマンセル表色系は,物体の色(表面色)を表わす体系であり,色相,明度,彩度に対応するヒューhue(H),バリューvalue(V),クロマchroma(C)の値によって色を特定する。この三属性が,それぞれ等歩度(感覚的に等間隔)となるように数値化されている(ただし,異なる属性間ではスケールが異なるので,比較はできない)。
ヒトは,わずかな波長の違いを色の違いとして見分けることができる一方で,ある程度の違いがあったとしても,ある範囲内の色をまとめて同じ色(たとえば赤)として扱うことができる。こうした色処理をカテゴリカル色知覚categorical color perceptionとよぶ。バーリンBerlin,B.とケイKay,P.は,言語における色名の発達には国や文化によらない普遍性があり,よく発達した言語にはどれも,白,黒,灰,赤,緑,黄,青,茶,紫,橙,ピンクという11の基本カテゴリー色に対応する色名が存在するとした。これら色名の使用に関しては,同一個人内,あるいは個人間で一貫性が高く,色の命名の際の反応時間も短いことがわかっている。また,チンパンジーでも同様の色カテゴリーが確認されている。こうした異なる言語における色名の共通性により,基本カテゴリー色の神経基盤は生得的に決まっていることが示唆されるが,基本カテゴリー色の普遍性を否定する研究もあり,今後さらに研究が必要とされる。なお,色の記憶も色カテゴリーの影響を受け,記憶した色はカテゴリーの代表色に近づくことが知られている。