(読み)くすり

精選版 日本国語大辞典 「薬」の意味・読み・例文・類語

くすり【薬】

〘名〙
① 人の肉体や健康、生命などについて霊妙な働きをするもの。不可思議な作用を発揮する物質。神薬、霊薬、仙薬の類。
※万葉(8C後)五・八四七「我が盛りいたく衰(くた)ちぬ雲に飛ぶ久須利(クスリ)はむともまた変若(をち)めやも」
※古今(905‐914)雑体・一〇〇三「音羽の滝の 音にきく 老いず死なずの くすりもが〈壬生忠岑〉」
② 病気や傷を治療したり、健康や生命の保持、増進に役立てたりするために、服用、注射または塗布するもの。古くは霊妙な力を発揮するものという意識を伴うことがある。水薬、粉薬、丸薬、膏薬、煎薬などがある。医薬品。薬剤。薬種。薬品。薬物。
※書紀(720)欽明一四年六月(北野本室町時代訓)「暦(こよみ)の本(ためし)種々(くさくさ)の薬物(クスリ)付送る可し」
※栄花(1028‐92頃)月の宴「御風などいひて、御湯ゆでなどし、くすりきこしめして過ぐさせ給ほどに」
③ 医薬品以外の、殺虫剤、農薬など、主としてその毒性を、目的の生物体に作用させる物質。ただし、医薬品との区別は必ずしも明確ではない。
※史記抄(1477)一〇「薬をつけてくさらかして落すほどに」
④ (医薬品や薬草などとされないもので)健康の保持、増進や傷病の治療などに効果があるもの、または行為。からだのためになる物事。
※徒然草(1331頃)六八「土大根を万にいみじき薬とて、朝ごとに二つづつ焼きて食ひける」
⑤ (比喩的に) 人間の、まちがった、適切でない行為や性向などを改めるのに効果のある物事。精神的にためになること。
※史記抄(1477)一一「苦言は口には苦けれども行には薬ぞ」
⑥ 「くすり(薬)の事」の意。「病気」を直接にいうのを避けた表現。
※太神宮諸雑事記(11C中か)「天皇御薬切切也」
⑦ 「うわぐすり(釉)」の略。
※類従本君台観左右帳記(1476)「壺の薬は、下薬うすかき色に薬さがりすぎずして、くろぐろとながれかかりて」
※青年(1910‐11)〈森鴎外〉二二「嫌に光る釉(クスリ)の掛かった陶器の円火鉢である」
⑧ 火薬。〔日葡辞書(1603‐04)〕
※浮城物語(1890)〈矢野龍渓〉九「砲銃の薬剤(クスリ)
⑨ 「くすり(薬)の司」の略。
⑩ (与えるとその効果があらわれるところから) 少額のわいろ。鼻薬。
※雑俳・水加減(1817)「薬が利・丁児からしる夫(つま)の穴」
※社会百面相(1902)〈内田魯庵〉失意政治家「何れ黄白(おクスリ)が効いてるからだが、政府党の領袖が変更を議する」

くす・す【薬】

〘他サ四〙 薬を用いて治療する。くする。いやす。〔法華経音訓(1386)〕
※サントスの御作業(1591)二「ココロノ クダケタル モノ ヲ cusuxi(クスシ)

くす【薬】

〘語素〙 くすりの意。「くすし(薬師)」「くすだま(薬玉)」「くすどの(薬殿)」などと用いられる。

やく【薬】

〘名〙 くすり。現在では麻薬などをいう俗語。〔和英語林集成(初版)(1867)〕

出典 精選版 日本国語大辞典精選版 日本国語大辞典について 情報

デジタル大辞泉 「薬」の意味・読み・例文・類語

くすり【薬】

病気や傷の治療のために、あるいは健康の保持・増進に効能があるものとして、飲んだり、塗ったり、注射したりするもの。医薬品。「胃の
殺虫剤・除草剤など、動植物に対して主に毒性を働かせるもの。「をまく」
陶磁器のうわぐすり釉薬ゆうやく
火薬。
心やからだのためになること。特に、あやまちを改めるのに効果のある物事。「失敗もいいになるだろう」
少額のわいろ。鼻ぐすり。「を利かせる」
[下接語](ぐすり)足留め薬あぶら合わせ薬うがい薬・売り薬うわ置き薬買い薬ぎ薬風邪薬傷薬気付け薬下し薬毛生え薬粉薬差し薬しびれ薬せんじ薬たま散らし薬通じ薬付け薬つや塗り薬眠り薬練り薬飲み薬吐き薬鼻薬振り出し薬れ薬水薬虫薬目薬
[類語]薬品薬物薬剤医薬薬餌

やく【薬〔藥〕】[漢字項目]

[音]ヤク(呉)(漢) [訓]くすり
学習漢字]3年
〈ヤク〉
くすり。「薬局薬効薬剤薬殺薬草医薬丸薬劇薬膏薬こうやく散薬生薬しょうやく仙薬調薬投薬毒薬農薬売薬媚薬びやく服薬麻薬妙薬良薬漢方薬特効薬
化学変化を起こさせる材料。「火薬弾薬爆薬釉薬ゆうやく
〈くすり(ぐすり)〉「薬箱薬指粉薬鼻薬目薬風邪かぜ
[名のり]くす・くすし
[難読]薬師くすし薬玉くすだま薬缶やかん薬鑵やかん薬研やげん

くす【薬】

[語素]くすりの意を表す。「師」「くすだま

やく【薬】

俗に、麻薬のこと。「の常習者」

出典 小学館デジタル大辞泉について 情報 | 凡例

日本大百科全書(ニッポニカ) 「薬」の意味・わかりやすい解説


くすり

地球上に存在する化学物質の多くは、生体に対してなんら作用を示さない。しかし、化学物質の一部には、生体の正常な生理作用に影響を及ぼすものがある。それは毒とよばれるものであり、そのうちで選択性のあるものが薬であるとされている。すなわち、生体に投与された化学物質が生体の生理作用に変化を生ぜしめたとき、これを薬理作用といい、このような化学物質として薬物と毒物があげられる。一般に、病気の診断、治療、予防のほか、健康の維持、増進のために用いられる物質を薬とよんでいるが、法令用語としては医薬品ということばがある。医薬品は医療に用いられることを目的とした薬品で、薬事法によって定義され、製造、販売には国の承認を得ることを必要としている。

 医薬品は、医師、歯科医師の処方箋(せん)なしで薬局、薬店から直接購入できる一般用医薬品と、医師、歯科医師が疾病の治療、予防、診断の目的で施用または処方箋によって調剤する医療用医薬品の二つに大別される。一般用医薬品は家庭薬、大衆薬ともいい、頭痛薬、かぜ薬、胃腸薬など作用の穏やかな医薬品をいう。「富山の薬」として有名な配置薬もこれに含まれる。

 ハエ、カ、ノミ、シラミ、ゴキブリなどの害虫の駆除に用いる殺虫剤、口臭を防止するもの、あせもやただれの防止に用いるもの、養毛剤、除毛剤(脱毛剤)などは、医薬部外品で医薬品ではない。

 薬にはこのほか、漢方で用いられる漢方薬、これに日本固有の和方で用いられる生薬(しょうやく)類が加わって和漢薬といわれるものがある。生薬も一部は医薬品として承認されている。また、昔から伝承されて薬として用いられる薬用植物をはじめとする民間薬がある。民間薬としては天然の動植物、鉱物が用いられ、効果は確実でないものも多いが、薬の原点でもあり、新しい医薬品を開発する源ともなりうることも忘れてはならない。

 各種ビタミンや牡蠣(かき)のエキス、胚芽(はいが)油、クロレラなど天然のビタミンや栄養素を多く含むものを健康食品といっている。最近、健康食品がブームとなっているが、これは薬と食品の境にあるものである。

 家畜や魚類など動物に用いられる薬は動物薬で、人間に用いられるものと同じものが使用される。農作物を害する動植物やウイルスなど病害虫の防除に用いられる農薬は、一般的に薬には含めない。

 医薬品の進歩は、結核による死亡率の激減に代表されるように医療の急速な発展を促し、国民の平均寿命の延長をもたらした。医薬品の開発は医療上国民に大きな恩恵をもたらしていることは事実であるが、一方、予期しない副作用も生じ、その有効性と安全性が大きな問題となっている。

[幸保文治]

薬と法令


 薬は保健衛生に重大な関係をもっていることから、薬事法その他関係法規によってさまざまな規制がなされている。

(1)薬事法(昭和35年法律145号) 医薬品、医薬部外品、化粧品および医療用具に関する事項を規制し、もってこれらの品質、有効性および安全性を確保することを目的としている。薬局に関する事項、医薬品等の製造(輸入)承認に関する事項、医薬品の再評価、医薬品等の製造業・販売業に関する事項、医薬品等の基準と検定・取扱いに関する事項、安全性等に関する情報の提供義務と情報収集への協力義務、治験の取扱い等について規定されている。薬事法は、1979年(昭和54)一部改正がなされ、再評価・再審査制度の法制化、GMP(製造管理、品質管理規則)の法制化、治験の届出、治験の依頼に関する基準の制定などが定められた。次いで1983年一部改正により外国製造業者の直接承認申請が認められ、93年(平成5)の一部改正ではオーファンドラッグ希少疾病用医薬品)等の研究開発促進がなされた。1996年一部改正が行われ、GCP(臨床試験の実施基準)の法制化、治験届のチェック制度など、GCP・GLP(適正動物試験実施規範)に沿った資料の提出義務、医薬品の緊急的な特例許可など、GPMSP(市販後調査の基準)の法制化、薬局等の患者への情報提供などが組み込まれた。2002年の一部改正では医療機器や生物由来製品(おもに動物に由来する原料または材料を用いた製品)の安全対策、医薬品・医療機器の製造承認制度の見直し等をはかるための法整備が行われた。

 2006年の一部改正では医薬品販売制度と指定薬物に関する事項が新たに入れられた。従来薬剤師でなければ販売できなかった一般用医薬品を、その副作用等による健康被害が生ずるおそれの程度に応じて、第一類医薬品、第二類医薬品、第三類医薬品に区分し、第二類医薬品および第三類医薬品の販売は2009年4月薬剤師以外に登録販売者が販売できるようにした。

 また、違法ドラッグを薬事法で取締りができるよう、薬事法の目的に指定薬物の規制に関する措置を講ずることを加えた。

(2)毒物及び劇物取締法(昭和25年法律303号) 医薬品、医薬部外品以外の毒物、劇物の取扱いを規制したもので、試薬などの取扱いはこれによる。

(3)麻薬取締法(昭和28年法律14号) 麻薬を正しく使用するための規制が定められており、麻薬を取り扱うことのできる者、業者を定め、免許制とし、その取扱いについて細かい規定を設けた。この法律は1990年6月改正が行われ、「麻薬及び向精神薬取締法」として、麻薬のほか向精神薬を含めて、それらの濫用(らんよう)による保健衛生上の危害を防止することを目的として取扱い規定がつくられた。

 また、大麻取締法(昭和23年法律124号)およびあへん法(昭和29年法律71号)では、大麻やアヘン(ケシ)の栽培、所持を規制している。覚せい剤取締法(昭和26年法律252号)は、覚醒(かくせい)剤の乱用による害を防止するために取り扱える機関を定め、免許を与えられた医療機関でなければ取り扱えないようにし、取扱い方法を規定している。

(4)医薬品副作用被害救済基金法(昭和54年法律55号) 医薬品の副作用による疾病、障害または死亡に関して、医療費、障害年金、遺族年金等の給付を行うことなどにより、医薬品の副作用による健康被害の迅速な救済を図ることを目的につくられた法律である。2002年、独立行政法人医薬品医療機器総合機構法が制定され、これに基づいて医薬品副作用被害救済制度と、生物由来製品感染等被害救済制度が実施されている。

(5)安全な血液製剤の安定供給の確保等に関する法律(昭和31年法律160号) 人の血液の利用の適正を期するとともに血液製剤等に伴う採血によって生ずる保健衛生上の危害を防止し、被採血者の保護を目的としてつくられた法律。2002年に改正され、法律名も採血及び供血あつせん業取締法から変更された。

(6)日本薬局方 主要な医薬品の規格を統一して品質を保証するための公定書である。もともと不良医薬品の取締りから発生したもので、収載品目には、繁用される原薬たる医薬品、繁用される基礎的製剤、繁用されないがとくに治療上必要な医薬品、天然の動植物から生産された医薬品(主として生薬)、製剤化のために必要な物質(医薬品添加剤)などが選ばれる。日本薬局方は第一部と第二部に分かれており、第一部は主として繁用される原薬たる医薬品および基礎的製剤を収め、第二部は主として混合製剤およびその原薬たる医薬品を収める、と薬事法で規定されていたのが、2002年の改正でこの条項は削除され、2006年4月より発効した第十五改正日本薬局方により第一部、第二部の区別はなくなった。

[幸保文治]

薬の歴史


 薬の歴史は人類の歴史とともにある。病気の原因がまったくわからなかった時代に、草根木皮などの天然物の投与による治療が、経験的に、しかも宗教と結び付いてなされていた。薬のもっとも古い記録は、メソポタミア、エジプト、中国にみられる。そして東洋ではそのまま進歩して「漢方薬」と称する形となり、ヨーロッパでは、錬金術の発達に伴い化学技術が進歩し、薬用植物からの有効成分の抽出、そして合成薬品へと発展していった。

[幸保文治]

メソポタミア・エジプト

薬についての最古の記録は、メソポタミアの粘土板(タブレット)にみられる。メソポタミアでは医師は司祭をも兼ねた。医術は呪術(じゅじゅつ)と結び付いており、薬もこれに従って用いられた。粘土板には数多くの動植物性の薬が楔形(くさびがた)文字で記されている。エジプトでも医師は司祭を兼ねた。医術と薬の記録は紀元前1550年ごろの「パピルス・エーベルス」(収集者であるドイツの考古学者G・エーベルスにちなみ、この名がある)に残されている。ここには約800種の薬の処方、約700種の動植物性、鉱物性の薬が載っている。このなかには現在使用されている生薬もある。

[幸保文治]

ヨーロッパ

ギリシアでは合理的、経験的な知識が重んじられ、論理的、体系的医学が発達した。ギリシア医学の代表としてはヒポクラテスをあげることができる。ギリシアの医学はローマに移り、ヨーロッパ全体へと広がっていった。そして古代ヨーロッパの薬についての知識は、シチリア生まれのギリシア人ディオスコリデスによって『マテリア・メディカ(薬物学)』Materia Medicaとして集大成された。ディオスコリデスはローマ皇帝ネロの時代の軍医で、遠征先の国の薬用植物・動物・鉱物を研究し、これを前記の著作にまとめた。この著書には約600種の薬物が収載されている。これはヨーロッパにおける初めての薬学書であり、長い間、薬物学、生薬学の典拠とされた。この古代ローマ帝政時代にガレノスが出て、古代医学は大成された。

 中世に入ると、ヨーロッパは戦乱と伝染病で荒廃したが、アラビアでは宗教的、政治的統一が成し遂げられ、文化は隆盛を極めた。薬学に著しい発展を招いた錬金術の研究も盛んに行われた。卑金属を貴金属に変えることを目的とした錬金術は、紀元前後にエジプトのアレクサンドリアで発達したもので、古代エジプトの化学技術を基礎としている。実験に重きを置き、実用に結び付いた研究で、現代の化学技術の基礎をつくりあげた。錬金術は薬剤の化学的調製法を教え、化学者である薬剤師という職業を独立させるのに役だったといえる。バグダードでは754年ごろ、政府の監督下に私設独立薬局が存在していたという。ヨーロッパではドイツ皇帝フリードリヒ2世が、無秩序な医療方法を改善するため、アラビアの医薬制度を取り入れ、1240年に医薬法を制定した。これは医師と薬剤師の資格を定め、職務分担を厳しく規制したもので、この制度は徐々にヨーロッパ全土に広まった。

 人間性を尊重し、宗教的因襲を否定するルネサンスと宗教改革の運動は、社会のあらゆる分野に大きな影響を与え、科学もまた例外ではなかった。パドバ大学教授ベサリウスは人体解剖を盛んに行い、1543年『人体の構造について(ファブリカ)』を発表し、近代解剖学の基礎を築いた。1546年にはドイツ人バレリウス・コルドス(1515―44)による薬方書がニュルンベルクで印刷された。これは公定の薬局方の初めであり、以後ヨーロッパ各地で薬局方が制定された。新大陸の「発見」以来、ヨーロッパに種々の植物が持ち込まれたが、17世紀には南アメリカのペルーからキナ皮が伝えられた。キナ皮はもともとペルーの現地人が薬用に使用しており、インカにおいて古くからコカの葉、トコン、ベラドンナなどとともに用いられていたものである。キナ皮は解熱効果が絶大であったため珍重され、ヨーロッパ全土に広まった。しかし、この時代はいずれも天然物を取り扱っており、製剤化はまだ研究段階にすぎなかった。

 近代薬学の誕生は、19世紀まで待たねばならなかった。18世紀後半に始まったイギリスの産業革命以降、工業とともに科学も著しい発達を遂げた。19世紀になると、薬用植物から、有効成分が次々と抽出された。その端緒を開いたのは、ドイツの薬剤師ゼルチュルナーによるアヘンからのモルヒネの単離であった(1803)。以後、フジウツボ科イグナチアの種子からストリキニーネ、キナ皮からキニーネとシンコニン、イヌサフランの球根からコルヒチン、コーヒー豆からカフェイン、タバコの葉からニコチン、セメンシナからサントニン、アヘンからナルセイン、コデイン、テバイン、パパベリン、ベラドンナからアトロピンとヒヨスチアミン、コカの葉からコカインが次々と取り出された。1828年にドイツの化学者ウェーラーが尿素を合成し、このときから有機化学が急速に発展した。そしてフランスの医学者マジャンディとその門下のクロード・ベルナールは実験薬理学、実験生理学の分野の開拓で先駆的役割を果たした。この時代には、パスツール、コッホによる細菌学の確立、亜酸化窒素(笑気)、エーテルのもつ麻酔作用の発見、ゼンメルワイス、リスターによる消毒法の発見もなされた。また、薬理学の父といわれるシュミーデベルクによる『薬理学の基礎』(1883)が著され、薬物、毒物とその作用が明らかとなった。そして有機合成化学と薬理学との発展が相まって、ヨーロッパにおける目覚ましい合成医薬品の開発となったわけである。1868年に狭心症の治療薬として亜硝酸アミルが、翌年には睡眠薬として抱水クロラールが発見された。また、解熱薬としてヤナギ属の植物が古くから用いられていたが、これからサリシンが分離され、サリシンがサリチル酸の誘導体であることがつきとめられ、サリチル酸の解熱作用を利用したアスピリンがつくられた。1899年のことである。そのほか、アセトアニリド、フェナセチン、アミノピリンなどの解熱薬が次々とつくりだされ、睡眠薬ではスルホナール、バルビツール酸類がつくられた。ヨーロッパでは、このようにして天然の草根木皮そのものから有効成分の抽出となり、さらに石炭タールを原料とする合成薬品へと進んでいった。

[幸保文治]

中国・日本

いま一方の人類文化の発祥地である中国では、黄(こう)氏、神農(しんのう)氏が百草をなめて民に薬の根本を教えたという伝承がある。3世紀初頭には張仲景(ちょうちゅうけい)によって『傷寒(しょうかん)論』『金匱(きんき)要略』が著されたという。このなかには生薬を組み合わせた処方による治療について述べられており、漢薬処方の典拠となっている。古代中国の薬に関する知識は、後漢(ごかん)から三国時代にかけてできた『神農本草経(しんのうほんぞうきょう)』(3世紀ごろ)に集約されている。その内容は陶弘景(とうこうけい)の『神農本草経集註(しっちゅう)』によって知ることができる。そこでは365種の薬物を上中下に分類している。上薬は不老長寿の薬で、人参(にんじん)(チョウセンニンジン)、甘草(カンゾウ)、地黄(ジオウ)などがあげられている。中薬は病気の予防と体力増強で、葛根(かっこん)(クズ)、当帰(トウキ)、芍薬(シャクヤク)などを含み、下薬は治療を主とし、半夏(はんげ)(カラスビシャク)、桔梗(キキョウ)、夏枯草(かごそう)(ウツボグサ)などがあげられ、それぞれの気味と薬効、異名が記されている。

 日本では、『古事記』『日本書紀』に記されている大国主命(おおくにぬしのみこと)と少彦名命(すくなひこなのみこと)が日本の医術の起源としてしばしばあげられる。大国主命が因幡(いなば)の白兎(うさぎ)の負傷に蒲黄(ほおう)(ガマの花粉)を用いたこと、神産巣日神(かんむすびのかみ)が大国主命のやけどにアカガイとハマグリの黒焼きを用いたこと(『古事記』)は、記録に残っている日本最古の薬物である。5~6世紀には朝鮮から薬師(くすし)と薬物が渡来したといわれる。607年(推古(すいこ)天皇15)の遣隋使(けんずいし)の派遣以来、日本と中国の交流が始まり、中国の医学、薬物も持ち帰られた。611年には推古天皇が薬猟(くすりがり)を行い、以後これは薬草採取の年中行事となった。初めはシカの袋角(ふくろづの)(若角)をとるための猟であったが、仏教思想の浸透とともに薬草採取に変じた。753年(天平勝宝5)に来日した唐僧鑑真(がんじん)は医薬の道にも詳しかったという。当時渡来した漢方薬は東大寺の正倉院に現存しているが、これは動植物性生薬で、肉桂(にっけい)、厚朴(こうぼく)、大黄(だいおう)、人参などは最優秀品といわれている。『神農本草経』『新修(しんしゅう)本草』などの薬物書も輸入され、『傷寒論』とともに日本漢方医学の基礎となった。やがて日本人の手になる本草書が完成されるに至り、深根(ふかね)(深江)輔仁(すけひと)の『本草和名』(918)、源順(したごう)の『倭名類聚抄(わみょうるいじゅしょう)』(931~938ころ)、丹波康頼(たんばのやすより)の『康頼本草』(984)などによって、中国薬物の大多数について国産の有無が解明された。その後、宋(そう)の『証類本草』(1082ころ)が輸入され、日本の薬学に大きな影響を与えた。

 鎌倉時代になると、貴族文化にかわって実用的なものが尊ばれるようになった。この時代には仏教の新しい宗派が台頭し、その僧侶たちは布教活動の一環として医術をも施した。茶の薬としての効能を説いた『喫茶養生記』を著した栄西(えいさい)も僧医であった。室町時代になると座の制度が発達し、薬種もここで取引されることもあった。一条兼良(かねら)の『尺素往来(せきそおうらい)』には、当時の薬物と製剤用具(薬剪(くすりぎり)、薬研(やげん)、擂槌(すりぎ)など)について記されている。

 近世になると、医学・薬学は著しい発展を遂げた。中国の医学が実質的に広く行われるようになったのもこのころからである。李時珍(りじちん)の『本草綱目』(1578)が先鞭(せんべん)をつけ、本草学(中国流の薬物学)が流行し、多くの薬物書も著された。なかでも曲直瀬道三(まなせどうさん)の『宜禁(ぎきん)本草』(1590)、遠藤元理(げんり)の『本草弁疑』(1681)、岡本一抱(いっぽう)の『和語本草綱目』(1698)、貝原益軒(えきけん)の『大和(やまと)本草』(1709)、小野蘭山(らんざん)の『本草綱目啓蒙(けいもう)』(1803)などがよく知られている。朱印船貿易による東南アジアからの医薬品の輸入も増え、大坂の道修町(どしょうまち)、江戸の本町は薬の問屋町として繁栄した。民間薬も多く用いられ、マクリ(海人草)、センブリ、ゲンノショウコなど、のちに新薬の原料となったものも多い。現代の家庭薬のもととなる売薬の製造、販売も始まり、香具師(やし)や行商人が縁日や市(いち)で売り、また医師や薬舗もこれを手がけるようになった。当時の売薬には反魂丹(霍乱(かくらん)、腹痛)、奇応丸(癪(しゃく)、腹痛)、救命丸(同上)、伯州散(腫(は)れ物)、実母散(婦人薬)などがある。幕府も薬草の栽培を奨励し、自らも江戸・牛込(うしごめ)雑司ヶ谷(ぞうしがや)に北薬園(大塚御薬園、のちに小石川に移り、現在の東京大学の小石川植物園となっている)、品川に南薬園(麻布(あざぶ)御薬園)を設けて薬草の栽培にあたった(1638)。江戸中期ごろから蘭方(らんぽう)、すなわちオランダ医学が盛んとなった。1774年(安永3)オランダの解剖書を翻訳した『解体新書』が杉田玄白(げんぱく)らの手によって刊行され、以後、『西洋内科撰要(せんよう)』(宇田川玄随(げんずい)・1793)、『和蘭医事問答』(杉田玄白・1795)、『医範提綱』(宇田川玄真・1805)、『蘭方枢機』(小森玄良(げんりょう)・1816)と次々に西洋の医学を紹介する著書が現れ、しだいに本格的な西洋の薬物も輸入されるようになった。また、蘭学と漢方の折衷も試みられるようになった。蘭方と漢方を学んだ華岡青洲(はなおかせいしゅう)は通仙散という全身麻酔薬を創製し、乳癌(にゅうがん)の手術を行った(1805)。明治維新前後からはイギリスなどの貿易商を通じて化学薬品の輸入が始まったが、当時の薬業家にはその化学薬品の良否を鑑定する薬学知識がなかったため、贋造(がんぞう)薬品が多かった。そこで1869年(明治2)から長崎医学校の教師として来日していたオランダの薬剤師ヘールツは、1873年当局に不良輸入薬品の取締りを訴え、その献策によって翌1874年司薬所(場)が設置され、不良薬品の排除に成功した。これが現在の国立医薬品食品衛生研究所(前、国立衛生試験所)の前身である。

 医薬品は18世紀末まではいずれの国においても草根木皮や動物、鉱物から得た生薬をそのまま使用していたが、19世紀に入り、有効成分の抽出が行われ、合成薬品がつくられるようになり、薬理学と化学の発展がこれを促進させ、20世紀に入ると化学療法剤をはじめとして続々と新薬が開発された。この新薬の開発は第二次世界大戦の前後を比べると圧倒的に戦後が多く、とくに新しい抗生物質、化学療法剤、向精神薬、循環器用剤など強力な薬効を示すものが多く、急速に医薬品工業は発展した。

 ここにいくつかの代表的医薬品群について開発史とその現状、将来について述べてみる。

[幸保文治]

化学療法剤・抗生物質

19世紀末に発見された破傷風とジフテリアの抗毒素血清は免疫療法の道を開いた。エールリヒは「結合せざるものは作用せず」との理念のもとに、ヒ素化合物の殺トリパノソーマ作用を研究し、その成果は、エールリヒと秦佐八郎(はたさはちろう)による梅毒治療薬サルバルサン(606号)の発見となった。これが化学療法剤の初めである。サルバルサンはネオサルバルサンやマファルゾールなどといった改良型のものに変わったが、ペニシリンの開発によって使用量が激減し、現在ではまったく使用されなくなった。化膿(かのう)性疾患に有効なサルファ剤の開発は、1935年にドイツのドーマクが発見したプロントジル・ルブルムに始まる。その有効な化学構造がスルファミンにあるところから、この誘導体の研究が第二次世界大戦前後に活発に行われ、数々の新サルファ剤が出現したが、抗生物質の著しい発展のため、ごく一部のサルファ剤、ハンセン病治療薬を除き、これも使用量が減っている。一方、結核の治療剤として開発されたのがパラアミノサリチル酸(パス)、チオアセタゾン、イソニアジドなどであるが、チオアセタゾンは肝障害の副作用があるため使用されなくなった。これらの薬剤はストレプトマイシンの発見と相まって結核の死亡率の激減に役だったが、耐性菌の発現とともにその有効性を減じ、結核治療薬の主流は内服薬である抗生物質のリファンピシンとなった。多剤耐性結核菌に有効なリファブチンも新しく開発されている。一方、グラム陰性菌感染症に対してキノロン系のナリジクス酸が開発され、ついでピペミド酸、ピロミド酸ができ、さらにグラム陽性菌にも有効なニューキノロン系のノルフロキシン、スパルフロキサシン、トスフロキサシン、エノキサシン、オフロキサシン、ガチフロキサシン、ロメフロキサシンなどが開発され、効力の範囲が拡大した。このニューキノロン系抗菌剤は開発の目標ともなっている。

 抗生物質では1928年にフレミングが青カビの一種の代謝物が溶菌性をもっていることを発見し、これをペニシリンと命名した。その後、1938年フローリーとチェインがこれの抽出分離に成功し、ここに抗生物質時代の幕があけられた。1944年にはワックスマンがストレプトマイシンを発見し、以来、放線菌、カビ、細菌など微生物の産生する抗菌性物質が数多く発見され、医薬品として感染症の治療、予防に用いられるようになった。そして、その化学構造が解明されると、化学合成によってつくられるものも多くなった。クロラムフェニコールはその例である。一方、ペニシリン系、セフェム系といったβ-ラクタム環を有する抗生物質は、その骨格である6-アミノペニシラミン酸、7-アミノセファロスポリン酸をカビでつくらせ、これを原料として数多くのβ-ラクタム系抗生物質が合成され、今日に至っている。抗生物質は細菌やリケッチア、クラミジアのみならず、癌(がん)細胞に対しても有効なものが発見され、制癌剤としても用いられるようになった。しかし一方ではショックなどの副作用、耐性菌の発現、菌交代現象による日和見(ひよりみ)感染の発生を招いており、感染症と抗生物質の開発合戦はさらに続いていくことであろう。

[幸保文治]

ビタミンの発見

鈴木梅太郎がぬかのアルコール抽出液から脚気(かっけ)の予防と治療に有効な物質を単離してオリザニンと名づけたのは1911年(明治44)のことである。同年ポーランドのフンクがイギリスのリスター研究所でこれを発見、ビタミンと名づけた。ビタミンB1の発見であり、ビタミン学の始まりである。ビタミンは食物として摂取するもののなかに含まれる微量の栄養素で、人間や動物の発育、健康保持のためになくてはならないものであることが解明された。そして、その欠乏症として、脚気のほか、夜盲症、壊血病、くる病、不妊症など多くの疾病がわかり、それらを予防、治療することから、ビタミンA・C・D・EやB群などが続々と発見され、さらに細菌の発育素の研究からB12、葉酸などが発見された。ビタミンB群は補酵素と関係があり、生化学、生理学的にその作用が解明されてくるにつれ、一方ではこれらビタミンの合成が可能となり、欠乏症のみならず代謝の潤滑剤としての意味も有し、保健薬として用いられるようになった。最近では健康食品としてビタミンC・E・A・Dなどが繁用され、ブームをよんでいる。

[幸保文治]

健康食品

健康食品の法的な定義はないが、1988年(昭和63)11月に出された厚生省(現、厚生労働省)通知のなかで、「栄養成分を補給するか、または特別の用途に適するものであって、食品として通常用いられる素材からなり、かつ、通常の形態、通常の方法によって摂取されるものを除くもの」を健康食品としている。すなわち、栄養成分を補給したり、特別の保健用途に適するもので、素材が動植物の濃縮物、抽出物、含有成分そのものなどであり、形態は粉末、粒状、錠剤、カプセル、液状など医薬品に似たもので、水とともに服用する。栄養補助食品ともいう。

 小麦はい芽油、米はい芽油、ビタミンE含有植物油、ビタミンC含有食品、クロレラ、スピルリナ、酵母食品、イコサペンタエン酸(EPA)含有精製魚油加工食品、ドコサヘキサエン酸(DHA)含有精製魚油加工食品、食物繊維加工食品、大豆レシチン含有食品、オタネニンジン根加工食品、シイタケ加工食品、牡蠣(かき)加工食品、シジミ加工食品、タンパク食品、オリゴ糖加工食品、乳酸菌利用食品、月見草油、ミドリイガイ加工食品、カルシウム含有食品、マコモ加工食品、アルファルファ加工食品、エゾウコギ加工食品、ガンマリノレン酸含有食品、スッポン加工食品、マンネンタケ(霊芝)加工食品、ベータカロチン含有食品、梅エキス食品、プルーンエキス食品、ムコ多糖・タンパク含有食品、花粉食品、タンパク質酵素分解物食品、プロポリス食品、キトサン加工食品、キダキアロエ加工食品、ギムネマシルベスタ加工食品、セント・ジョーンズ・ワート(セイヨウオトギリソウ)含有食品などがある。

 厚生労働省は、一般的に用いられている「栄養補助食品」という名称をそのまま扱い、ヒト試験での科学的な証明レベルにより「特定保健用食品」「特定栄養補助食品」「その他の健康食品」の三つに分類し、記載できる表示内容を区別した。たとえばプレーンヨーグルトでは「特定保健用食品」という名称が用いられる。その後同省は、2001年(平成13)4月保健機能食品制度を新設し、基準を満たせば国の審査や許可を必要としない「栄養機能食品」と審査や許可が必要な「特定保健用食品」に分けた。栄養補助食品は栄養機能食品に該当し、ビタミン、カルシウムなどの栄養素を含んだ錠剤やカプセルで、このとき対象となったのはビタミンとミネラル類の14種(のちに3種が追加され17種)。これらについては、効果表示が認められる。保健機能食品制度は、2009年9月、厚生労働省から消費者庁へ移管された。なお、特定保健用食品は2013年4月11日時点で1052品目が表示許可・承認されている。

[幸保文治]

ホルモンの発見

ホルモンの研究は19世紀から行われていたが、結晶として最初に取り出されたホルモンは高峰譲吉による副腎(ふくじん)髄質ホルモンのアドレナリンで、1901年(明治34)のことである。翌年にスターリングらによって十二指腸粘膜からセクレチンが抽出され、そしてその3年後、スターリングはセクレチンのような内分泌物をホルモンと命名した。ホルモンもビタミンと同じく微量で作用を現すが、ホルモンが生体内でつくられる物質であるのに対し、ビタミンは食物などとして外部から摂取しなければならないところに相違がある。ホルモンは脳下垂体、甲状腺(せん)、副甲状腺、膵臓(すいぞう)、副腎、睾丸(こうがん)、卵巣、子宮などの臓器から分泌される。ホルモン剤もビタミン剤と同じく、ホルモンの欠乏によっておこる病気の治療に用いられたが、その後ホルモン作用をもつ薬物が合成され、ホルモン剤の主流となった。そして、女性ホルモン(卵胞ホルモン、黄体ホルモン)、男性ホルモン、さらに女性ホルモン、男性ホルモンの作用に拮抗(きっこう)する抗ホルモンも発見された。これらのホルモン剤は女性および男性ホルモン欠乏症に対する補充療法に用いられるほか、女性ホルモンは男性の前立腺癌(がん)などの治療に、男性ホルモンは女性の乳癌や子宮癌、卵巣癌などに有効なことがわかり、さらに抗ホルモン剤がこれらの癌の治療薬として登場してきた。また、副腎皮質ホルモンが抗炎症剤として用いられるようにホルモン作用以外の薬効で繁用されるようになってきた。

[幸保文治]

新しい薬の傾向

性機能改善治療薬バイアグラ(シルデナフィル)、発毛剤ミノキシジル、低用量経口避妊薬(ピル)、ニコチンを含有するニコチンガムおよびニコチンパッチ(貼付(ちょうふ))剤や、ニコチンを含有しない禁煙治療経口剤といった禁煙治療薬、肥満治療薬プロペシアなど、生活改善薬なる新しい薬の領域が製薬企業の一つの目標となっている。生活改善薬とは「生命にかかわる病気ではないが、人によっては気になる体の症状や生活習慣を改善する薬」をいう。

 病気の原因と薬の作用機序(メカニズム)の解明により、新しい作用機序で強力な薬理作用をもつ薬が登場してきた。

 第二次世界大戦後、医薬品開発のトップを占めたのは抗生物質で、ペニシリンをはじめとする数多くの抗生物質が開発され感染症の治療に用いられた。その主流はβ(ベータ)-ラクタム系抗生物質で、ペニシリン系からセフェム系へと発展し、さらにカルバペネム、モノバクタムといった新しい薬剤が合成された。これらは感染症治療に威力を発揮したが、一方では耐性菌の発現と日和見(ひよりみ)感染の発生により、院内感染対策と耐性菌に有効な薬剤の開発が進められ、メチシリン耐性黄色ブドウ球菌(MRSA)に対して有効なアルベカシン、バンコマイシンのほかムピロシン、ティコプラニンができた。そのほかバンコマイシン耐性腸球菌に対する薬剤として、合成抗菌薬リネゾリドが開発された。

 抗生物質の発展とともにサルファ剤は減少の一途をたどり、かわってナリジクス酸よりはじまるキノロン系抗菌薬からニューキノロン系へと発展してきた。そしてさらに、前述のリネゾリド(オキサゾリジノン系)の開発へと進んだのである。

 抗ウイルス薬では単純疱疹(ほうしん)、帯状疱疹(たいじょうほうしん)に有効なアシクロビル、帯状疱疹治療薬パラシクロビル、さらに単純ヘルペス脳炎に有効なビダラビン、サイトメガロウイルスに効くガンシクロビルがあり、エイズ発見以来、その治療薬の開発が急がれ、ジドブジン、ジダノシンをはじめおよそ20種もの薬が使用可能となった。インフルエンザの治療薬ではA型インフルエンザに有効なアマンタジンに次いで、A型およびB型インフルエンザに有効なザナミビル、オセルタミビルが市販された。前者は吸入剤として、後者は内服薬でいずれもA型およびB型インフルエンザウイルスの必須酵素であるノイラミニダーゼを阻害し、ウイルスの増殖を阻止する。

 抗悪性腫瘍剤では5‐FUおよびその誘導体、シスプラチン、植物由来のエトポシド、ピノレルビン、イリノテカン、ノギテカン、パクリタキセル、ドセタキセル、抗腫瘍性抗生物質のアントラサイクリン系、アルキル化剤ではシクロホスファミドがよく使用されており、それらはさらに副作用の少ないもの、効力の大なるものへと開発が進められ、テガフールの配合剤、カルボブラチン、ネダプラチン、オキサリプラチン、エビルビシン、イルダビシンなどが市販された。

 そして、脚光を浴びているのが分子標的薬である。トラスツズマブ、リツキシマブ、ゲフィチニブ、イマチニブなど特定の癌に著効を示しており、分子標的薬の開発は製薬企業の目標ともなっている。

 一般に抗悪性腫瘍剤では効力の大なるほど、副作用も大で、副作用への対応や併用による治療効果の増大を考慮している。癌による痛みを緩和する方法にモルヒネの投与があり、また、副作用として多く発現する嘔吐(おうと)に対して、制吐剤が用いられる。これらは癌治療補助薬ともいわれ、モルヒネでは効果の持続する持効製剤や坐薬(ざやく)などが開発され、制吐剤にセロトニン受容体(5HT3)拮抗剤であるグラニセトロン、オンダンセトロン、アザセトロン、ラセセトロン、トロピセトロンなどがあり、これらの使用により癌化学療法は急速に進展した。

 生活習慣病、老人病の薬では抗高血圧剤、抗高脂血症剤、抗糖尿病薬、抗認知症薬、骨粗鬆症(こつそしょうしょう)、頻尿・尿失禁に対する治療薬などに新しい傾向がみられる。

 抗高血圧剤ではβ遮断薬、カルシウム拮抗薬、利尿薬、アンジオテンシン変換酵素阻害薬(ACE‐Ⅰ)、アンジオテンシン変換酵素阻害薬(ARB)がよく用いられている。ACEはアンジオテンシンⅠを昇圧物質であるアンジオテンシンⅡに変換する酵素で、これを抑制することにより血圧を下げる。ARBはアンジオテンシンⅡ受容体(ATⅡ)に直接作用して血圧を下げるもので、ロサルタン、カンデサルタンなどサルタン類が数多く開発され、現在、ARBとカルシウム拮抗剤が主流を占めている。ARBは降圧作用のほか、慢性心不全、2型糖尿病性腎症の適用をもつものもあり、開発の目標となっている。また、新たに選択的抗アルドステロン薬のエプレレノンが開発され、心不全合併高血圧の治療に福音をもたらした。アルドステロンはレニン・アンジオテンシン・アルドステロン系全体を調整する重用な昇圧ホルモンであり、その作用をブロックすることにより降圧作用がみられ、これらのブロッカーの開発が進められている。

 抗脂血症剤ではコレステロール合成阻害を機序とするHMG‐CoA(β-hydroxy-β-methylglutaryl cocarboxylase A)還元酵素阻害薬が主流で、プラバスタチン、シンバスタチン、ビタバスタチン、フルバスタチン、アトルバスタチンがあり、スタチン系とよばれている。新しくはコレステロールの吸収阻害を機序とするエゼチミブが開発され注目を浴びている。

 抗糖尿病薬ではインスリン非依存型糖尿病に有効なα(アルファ)-グルコシダーゼ阻害薬アカルボース、ボグリボースとインスリン抵抗性改善薬トログリタゾン、ピオグリタゾンがあり、いずれも新しい作用機序で、従来のスルホニル尿素系経口糖尿病薬が膵(すい)β細胞に働いてインスリンの分泌を促進するのに対し、前者は糖分解酵素を阻害することにより糖質の消化吸収を遅延させて糖尿病を治療する。後者は糖尿病状態で低下しているインスリン標的臓器でのインスリン抵抗性を改善し、末梢(まっしょう)での糖の利用を促進し、肝臓での糖放出を抑制し、血糖を低下させるユニークな作用機序である。トログリタゾンは繁用されたが、重篤な肝障害が報告され発売が中止された。

 抗認知症薬ではアセチルコリンエステラーゼの阻害作用によりコリン系機能を促進してアルツハイマー病の症状改善に有効な塩酸ドネペジル(アリセプト)が開発され、同様の作用機序の薬剤が開発の対象となっている。

 骨粗鬆症の治療薬にはエストロゲン(女性ホルモン)、ビタミンD、カルシウム剤、カルシトニンなどがあるが、メナテトレン(K2)イブリフラボンそしてビスホスホネート製剤(アレンドロン酸、リセドロン酸、エチドロン酸、パミドロン酸、インカドロン酸、ゾレドロン酸)の開発がなされている。尿失禁・頻尿治療薬として塩酸プロピベリン、塩酸オキシブチニン、塩酸フラボキサードがあり、前立腺肥大症に伴う排尿障害にまったく新しい化合物である塩酸タムスロシンがある。

 さらに老人に多くみられる過活動膀胱における尿意切迫感、頻尿、切迫性尿失禁に対する治療薬としてソリフェナシン、トルテロジン、イミダフェナシンが開発され、注目を集めた。

 次に消化性潰瘍(かいよう)治療薬ではヒスタミンH2受容体阻害薬であるシメチジン、ラニチジン、ファモチジンなどの開発により治療効果が一段と向上したが、さらにプロトンポンプ阻害薬(PPI)オメプラゾール、ランソプロゾール、ラベプラゾールが開発され、有効性が高まった。さらに、消化性潰瘍の一因としてヘリコバクター・ピロリがあげられ、その除菌に抗菌薬とPPIの併用が有効なことがわかった。また、下痢・便秘の両方に効くポリカルボフィルカルシウムも開発された。

 向精神薬は第二次世界大戦後クルロプロマジンの発見により著しく発展した。そのうち抗うつ薬では三環系、四環系抗うつ薬が主として使用されているが、新たに選択的セロトニン再取り込み阻害薬(SSRI)フルボキサミン、パロキセチンが登場した。うつ病患者では脳内モノアミン(ノルアドレナリン、セロトニン)が欠乏しており、神経終末における脳内モノアミンの再取り込みを阻害することにより神経接合部における脳内アミンを増加させて抗うつ効果を発現する。続いて選択的セロトニン、ノルアドレナリン取り込み阻害薬(SNRI)ミルナシプランも登場した。

 抗アレルギー薬では喘息(ぜんそく)の治療、アレルギー性鼻炎の治療薬の開発が目だっている。

 慢性関節リウマチ、変形性関節症の治療に非ステロイド系消炎鎮痛剤が用いられているが、消化管障害が多くみられ、その作用機序がプロスタグランジン合成酵素であるシクロオキシゲナーゼ(COX)の阻害にあり、しかもCOXにはCOX‐1とCOX‐2があり、COX‐1は全身の細胞に、COX‐2はサイトカインやホルモンなどの刺激で一過性に出現することがわかった。そしてCOX‐2の選択的阻害薬セレコキシブ、ロフェコキシブが開発された。消化管障害や腎障害がなく、新しい消炎鎮痛剤として、またアルツハイマー病、大腸癌(がん)などでCOX‐2の発現が増強されることから、これらに対して有効性が考えられている。

 抗リウマチ薬にはサラゾピリンなどの免疫調節薬、メトトレキサート、タクロリムスなどの免疫抑制剤があるが、新たに注目と期待を集めて登場したのが抗TNF(腫瘍壊死因子)薬のエタネルセプトである。エタネルセプトは可溶性TNF-α受容体で、関節リウマチの炎症の発生機序が炎症性サイトカン(TNFおよびIL-6)によることがわかり、これらを標的として遺伝子組換え技術により開発されたもので、著効がみられている。また同じ作用を示すものに抗TNF-α抗体のインフリキシマブ、ヒト型抗ヒトTNF-αモノクローナル検体のアダリムマブ、抗ヒトインターロイキン-6レセプター抗体のトシリズマブがある。

 難病への治療薬、オーファンドラッグの開発も地道に着々と進んできている。

 遺伝子工学の発展は新しい医薬品を次々と誕生させた。ヒトインスリン、ヒト成長ホルモン、ヒトt‐PA、インターフェロンα、β、γ(ガンマ)、HBワクチン、血液凝固第Ⅷ因子、エリスロポエチンなどがその例で、遺伝子情報の解明により、遺伝子治療が現実に行われるようになり、ゲノム創薬、テーラーメイド医療が着実に進展し、この分野の医薬品が続々と開発されつつあり、なかでも分子標的薬が制癌剤、抗リウマチ薬として注目を浴びている。

[幸保文治]

薬の作用・副作用


 薬の作用には作用部位から局所作用と全身作用があり、作用の質的な面から一般作用と選択作用が、治療面から主作用と副作用がある。その作用を機能面からみると、生体の機能を亢進(こうしん)する場合(興奮)と逆に減弱させる場合(抑制)とがある。また、作用の持続時間からみると、一過性の作用か持続性の作用かという見方もあり、直接作用あるいは一次作用と、間接作用あるいは二次作用ということもある。それらは薬理作用の現れ方、現れる期間、その質的な内容から考えられている。

 薬の作用はまず薬物が標的器官あるいは組織、細胞に結合することから始まる。薬物が結合することによって作用の現れる箇所または接点をレセプター(受容体)という。薬物レセプターは細胞膜または細胞内に存在するタンパク性の高分子の化合物であると考えられている。薬物の作用にはこのレセプターを介するものと、そうでないものとがある。レセプターを介さない作用としては、制酸剤による胃酸の中和といった単なる化学反応によるもの、高張(こうちょう)の糖液の注射による利尿効果は浸透圧による物理化学的な反応で現れるといったことなどで、多くの薬物の作用はレセプターを介する。レセプターを介する薬物の作用は、微量で特異な作用が現れること、薬物それ自身特異的な立体構造をもつこと、似通った化学構造の薬物で拮抗(きっこう)されるといった特徴をもっている。レセプターとしては、アドレナリン(エピネフリン)のα・βレセプター、ヒスタミンのH1・H2レセプター、アセチルコリン、セロトニン、ドーパミンレセプターなどが有名である。

[幸保文治]

薬理作用に影響を与える因子

製剤された医薬品では原料薬物が同一組成であっても、薬効に差がみられることが多い。その原因は原料薬物の物性をはじめ、製造工程、流通上の問題、調剤上の問題、使用者(患者)の状態があげられ、とくに製造上の各種因子と患者側の状態が大きく影響する。一般的に薬物が薬理作用を現す場合の要因には次のようなものがある。

(1)用量 薬物が薬理作用を現すためには一定量以上の用量を必要とする。これが有効量であり、薬理作用の現れない量を無効量といい、人によって差がある。有効量でもだんだん量を増していくと中毒症状が現れる。これが中毒量で、さらに増量すると死に至る。これを致死量という。一般的に薬用量というのは有効量のうち医師が通常用いる量であって、常用量ともいわれている。常用量は最小有効量よりやや多いのが普通である。中毒量の前に極量がある。極量については、危険量という見方と、薬用量の最大量、警戒量という見方がある。薬の安全性は有効量と致死量の比で表され、薬用量と中毒量の幅の大きな薬物が安全性の高い薬である。劇薬、毒薬の区別は安全性のうえで医薬品の取扱い上定められた規制である。

(2)年齢 薬物の作用は年齢によって異なる。とくに新生児については薬物代謝酵素の産生も十分でないところから、薬の吸収、分布、代謝、排泄(はいせつ)のパターンが成人と異なっており、小児薬用量の計算はむずかしい。一般的に小児薬用量は成人量を基準として、年齢、体重、体表面積から計算される。最近では高齢者についても、諸器官の機能の減弱から薬の作用が成人と異なるので、その薬用量が問題となっている。しかし、高齢者は小児と異なって個体差が大きい。

(3)性別 男女の性差と薬の効果については明らかに差がある。一般的に女性は男性より薬に対する感受性が大である。この原因は性ホルモンによると考えられている。

(4)人種差 人種の差により薬物の代謝速度が異なることがある。たとえばイソニアジド(抗結核薬)ではアセチル化の速度が白人と黄色人種では明らかに差があり、黄色人種のほうが迅速型が多い。動物と人間では薬効の差がみられるのは当然である。

(5)遺伝因子 遺伝的な原因により薬物に対する感受性の増減がみられる。とくに薬物代謝酵素の欠損の場合の薬物の作用の増強が問題となっている。たとえばグルコース-6-リン酸脱水素酵素の欠乏のある患者では、クロラムフェニコール、抗マラリア剤、アスピリンやフェナセチンなどの解熱鎮痛剤により溶血性貧血が誘発される。サクシニルコリンによって生ずる持続性の無呼吸症も異型のエステラーゼをもつ患者でおこる。

(6)耐性 薬を反復して投与するとしだいに効果が少なくなってくることがある。この現象を耐性という。すなわち生体自身が薬物に対して感受性が少なくなることを意味している。生来ある一定の薬物に対して感受性の大なる場合、これを非耐容という。たとえば生まれつき酒の弱い人などは、アルコールに対して非耐容であるという。薬物に非耐容の人は、薬物が効きすぎるので注意を要する。

(7)栄養状態・病的状態 薬の作用は栄養状態、病的状態によっても異なる。とくに肝障害、腎障害のある患者では、一般的に生体内での代謝、排泄が悪くなることから、薬の効果が持続したり強く現れたりする。

(8)薬物相互作用 薬物の併用により、それらの効果が増強されたり(協力作用)、減弱されたり(拮抗作用)する。食物が薬物の効果に影響を及ぼすこともあり、また臨床検査値に影響を与える薬物もある。薬物相互作用について、詳しくは次の章を参照いただきたい。

[幸保文治]

薬物相互作用

薬物相互作用Drug interactionとは2種以上の薬物が1種あるいはそれ以上の薬物の薬効や毒性を変えるような方法で相互に作用しあうことを意味している。いいかえれば2剤以上の薬剤の併用時にみられる単独投与では説明できない薬物の異常反応ともいえる。

 薬の飲み合せともいい、これには複数の薬を服用することにより個々の薬の作用が増強されたり、減弱されたりすることと飲食物・嗜好品(健康食品を含む)と薬をいっしょに飲むことによる薬の作用の変化があげられ、前者は薬物間相互作用Drug drug interaction、後者は食物・薬物間相互作用Food & Drug interactionといわれている。

 薬理学では古くから薬物を併用することにより薬理作用の増強(相乗作用、相加作用)がみられることから、薬物の併用を有利な面から利用していたが、第二次世界大戦後、中枢神経系に作用する薬物(向精神薬など)の出現により薬物相互作用の問題が浮かび上がってきた。

 1950年代に、モノアミンオキシダーセ阻害薬(MAO‐I=マオインヒビター)であるフェネルジン、イプロニアジド、ナイアラマイドが精神賦活(ふかつ)剤(抗うつ薬)としてうつ病の治療に用いられるようになり、1958年には三環系抗うつ剤イミプラミン、アミトリプチリンなどができ、この両者の併用で毒性が増大することがわかり、イギリスで1962年警告が出された。そしてフェネルジンとアミトリプチリンおよびフェネルジンとイミプラミンの併用で死亡例が報告され、1965年ロンドンで第一回の臨床的薬物相互作用に関するシンポジウムが開かれ、薬物の併用を有害作用の面から重要視するようになった。

 一方、オーストラリアのクイーンズランドで豆を常食する住民が高血圧症のためにMAO‐I(マオインヒビター)を降圧剤としてのんでいたが、逆に血圧の上昇により死亡した例が報告され、食物と薬との相互作用も問題となった。豆には血圧を上昇させるノルアドレナリンの素となるチラミンが多く含まれているためとわかった。

 その後多くの新薬が開発され各種疾病の治療に用いられるようになり、薬物相互作用の機序も解明され、医薬品情報の重要な位置を占めることとなった。

 薬物相互作用の機序には、一方の薬物が他方の薬物の生体内動態(吸収・分布・代謝・排泄(はいせつ))に変化を与えることによるもの(薬物動態的相互作用)と薬物の作用部位における感受性の変化として薬理作用の増強または減弱として現れるもの(薬力学的相互作用)の二つがある。薬物動態的相互作用では薬物代謝酵素チトクロムP‐450を介するものが多く、チトクロムP‐450は肝細胞に多く存在し、20種以上の分子種が確認されている。そのなかには、医薬品の代謝に関与する5種の分子種と代謝をうける薬物名も明らかとなっており、これらの研究成果により薬物相互作用の予知が可能となった。実際に重篤な症状を呈した薬物相互作用の例には、抗癌剤フルオロウラシルと帯状疱疹治療薬ソリプジンの併用による死亡例(フルオロウラジルの血中濃度の上昇による骨髄障害)、抗ヒスタミン剤テルフェナジンと抗真菌剤ケトコナゾール、抗生物質エリスロマイシンとの併用による不整脈のための死亡例、抗菌薬エノキサシンと非ステロイド系消炎鎮痛剤フェンプフェンの併用でのけいれん、C型肝炎治療薬インターフェロンα(注射)と小柴胡湯(しょうさいことう)(内服)との併用による間質性肺炎などがある。飲食物と薬との関係ではカルシウム拮抗薬フェロジピンとグレープフルーツジュース、納豆とワルファリン(血液凝固阻止薬)が有名で、グレープフルーツジュース中にはナリンジンという苦味成分があり、これが腸内細菌の作用によりナリンゲニンになりチトクロムP‐450の作用を阻害し、フェロピジンの血中濃度を上昇させ副作用が発現する。納豆とワルファリンでは、納豆菌が腸内でビタミンKを合成し血液凝固を促進するため、ワルファリンの作用が弱まるので、ワルファリン服用中は納豆の摂取は不可である。また、健康食品であるセント・ジョーンズ・ワート(セイヨウオトギリソウ)含有食品もチトクロムP‐450を誘導し、ワルファリンや経口避妊薬、エイズ治療薬、ジゴキシンなどの強心薬、テオフィリンなどの気管支拡張薬、てんかんの薬、抗不整脈薬キニジン、リドカインなどの作用を減弱させることがわかっている。喫煙も同様に酵素誘導をおこし、テオフィリン、フェナセチン、プロプラノロール、三環系抗うつ薬などの排泄速度を増大させ、インスリンの吸収低下など薬物の作用の減弱を引き起こす。

 このような薬物相互作用の実例は数多くわかっており、強力な薬理作用をもつ薬物が数多く使用されている今日、薬物療法の安全性確保のための重要な情報である。

[幸保文治]

薬物の代謝

薬物が生体内に入ると肝臓その他の部位で代謝され、不活性の物質となって排泄されるが、ごく一部のものはそのままの形で排泄される。生体に入った薬物は外部から侵入した異物であるので、生体側の機構として、これらの異物をいかにして無害なものに変じて外部へ排泄するかという機能が働くわけで、これが薬の代謝である。普通このことを解毒という。一般的に水に溶けにくく、脂肪に溶けやすい性質をもった薬物は吸収されやすく、水に溶けやすいものは排泄されやすい。したがって、生体内に入った薬物は水に溶けやすい形に代謝されて、尿中に排泄されるのが普通のルートである。薬物の代謝を化学反応としてみると、酸化、還元、加水分解、抱合の四つがある。抱合の例としてはグルクロン酸抱合が有名である。これは、グリコーゲンから生成されたグルクロン酸が、主として肝臓で薬物と結合して薬物の作用を不活性化するもので、これによって薬物は水に溶けやすい形になって体外に排泄される。

 しかし、薬物の代謝はすべて不活性化されるばかりではない。次の三つの型がある。

(1)活性のある形の薬物が生体内で不活性化され、非活性型となって排泄される場合
(2)活性のある形の薬物が他の活性ある形の薬物に変化して作用し、ついで不活性化されて排泄される場合
(3)非活性型の薬物が生体内に入って代謝を受け、活性型になり作用して、ふたたび不活性化されて排泄される場合
 (2)(3)の型では活性型のまま排泄されることもある。(3)のパターンが新しい医薬品の開発の目標ともなっているプロドラッグである。

 薬物を代謝酵素の面からみると、薬物そのものが代謝酵素を促進する場合と阻害する場合がある。すなわち、薬物代謝酵素誘導剤や阻害剤となる。フェノバルビタールは薬物代謝酵素の誘導剤であり、薬物代謝酵素の作用を受ける薬剤との併用は併用薬剤の効果を減弱する。このように薬物の併用は、前章でも述べたように相互作用といって、相互の薬物の薬理作用に影響を与えることがわかってきている。

 薬物の経路は、経口投与され、消化管から吸収され、血流を通って門脈から肝臓に入り、ここで主なる代謝を受ける。1回の通過でほとんど効果のなくなるような代謝(ファーストパス効果)を受ける薬物は経口投与は不適当で、門脈を通らない経路、たとえば注射剤や直腸から直接吸収させる坐薬(ざやく)あるいは口腔(こうくう)粘膜から吸収させる舌下錠、バッカル錠、また、貼付(ちょうふ)剤、軟膏(なんこう)剤として経皮吸収を利用するといった形で投与される。

[幸保文治]

薬の副作用

「医薬品の副作用とは有害かつ予期せざる反応で、疾病の予防、診断、治療または身体的機能の修正のために人に通常用いられる量で発現する作用」と世界保健機関(WHO)では定義している。広義の副作用には次の六つがあげられる。(1)過量、(2)本来薬物のもっている作用で、主作用でないもの(狭義の副作用)、(3)二次作用、(4)特異体質、(5)非耐容、(6)アレルギー。このうち、特異体質、非耐容は生体側の問題である。過量には絶対的過量と相対的過量とがあり、前者は自殺などの目的で意識的に大量の薬剤を服用したり、用量を誤って服用したときにおこる。これは本来の薬の作用が強く現れたものである。後者は薬物間相互作用の例で、たとえば6-メルカプトプリン(制癌剤)とアロプリノール(尿酸値を低下させる薬)の常用量の併用では、生体内で6-メルカプトプリンの代謝がアロプリノールによって阻害され、6-メルカプトプリンの過量投与と同じ結果が現れるといったことがあげられる。副作用のなかでいちばん注意しなければならない問題である。

 二次作用とは、たとえば抗生物質の経口投与により腸内細菌叢(そう)に変化を生じ、細菌によるビタミンKの生産がみられなくなり、ビタミンK欠乏となり、出血傾向が現れるといったことで、薬物そのものの作用でなく、二次的におこる作用をいう。

 特異体質では、生体内における酵素系のない体質の遺伝が薬の代謝と関連し、代謝の遅い場合、過量と同じ現象を現すこともその一例である。

 非耐容は薬の効きすぎることをいう。これは、ある薬に対しほかの人ではなんでもないのに、その人だけに強い作用が現れるといった現象をいう。薬物のアレルギーは過敏症ともいわれ、薬の副作用でもっともよく現れる現象で、これは、薬物に何度か接触したあとにおこるもので、その体質は遺伝するといわれている。

 薬の副作用の例では、アンプル入りのかぜ薬の服用によるショック死、キセラナミン(抗動脈硬化用剤)の肝障害、クロロキン(抗マラリア剤、膠原(こうげん)病治療薬)の視力障害、クロラムフェニコール(抗生物質)の再生不良性貧血などの血液障害による死亡例、キノホルム(止痢薬)によるスモン、コラルジル(冠血管拡張薬)による脂肪肝、サリドマイド(睡眠薬)によるあざらし肢症(ししょう)、アミノピリン(解熱鎮痛剤)の発癌性などがあり、副作用のために製造を中止した薬物も少なくない。新しい作用機序で世界中で繁用されていた糖尿病治療薬トログリタゾンは重篤な肝障害により製品回収が行われ、製造中止となった。

 アスピリンは解熱・鎮痛・消炎剤として繁用されているが、このものの副作用として食欲不振、胸やけ、胃痛、悪心(おしん)、嘔吐(おうと)といった消化器障害や発汗がよく知られている。発疹(ほっしん)も多くみられ、ライ症候群の原因として問題となり、アメリカではインフルエンザや水痘に罹患(りかん)した小児に対してはアスピリンなどのサリチル酸系の薬剤を使用しないよう警告している。また、ブタゾリジンなどの非ステロイド系消炎鎮痛剤では発疹、消化器障害のほか血液障害もみられる。

 抗生物質ではペニシリン、ストレプトマイシンの注射によるショック、ストレプトマイシンによる難聴、腎障害、リンコマイシンでは偽膜(ぎまく)性大腸炎、エリスロマイシンエストレートによる肝障害、アムホテリシンBによる腎障害などが有名である。また、作用も強力であるが副作用も著しいものに副腎皮質ホルモン剤がある。感染症の誘発、増悪、消化性潰瘍の発生など重篤な症状を呈する。抗悪性腫瘍(しゅよう)剤(制癌剤)では一般的に悪心、嘔吐を呈するものが多く、血液障害もよくみられる。ブレオマイシンによる肺線維症は不可逆的な副作用である。抗ヒスタミン剤は副作用として眠気を催すものが多いが、逆にこの作用を利用して睡眠薬として用いることがある。まさに主作用と副作用は見方によって逆となることもあり、副作用の発現により、新たな薬の作用が検討され、新薬の開発に導かれた例も少なくない。

 また、薬物の併用による副作用の増強は重篤な症状や死亡例もあり、薬物相互作用として重要視されてきた(「薬物相互作用」の章参照)。

[幸保文治]

製剤・剤形


 薬物を人体に投与する場合、薬物がそのままの形で投与されることはきわめて少ない。内用、外用、注射といった投与ルートにもっとも適した、しかもその薬物の効果を十分に発揮でき、安全性が大である剤形が選ばれる。あるいは逆に薬物の物理化学的性状およびそのものの生体に対する吸収、分布、代謝、排泄などの状況から、さらに製剤技術上の問題が加味されて、投与ルートが決定されるといったほうがよいかもしれない。同一組成薬品の氾濫(はんらん)する今日、製剤の優劣は薬効の優劣として現れることが多い。その際、薬物の物性(粒子径、結晶形など)、添加剤、製剤方法、剤形などが大きな要因となる。

 たとえば抗アルドステロン製剤であるスピロノラクトン(利尿剤)やグリセオフルビン(抗生物質、抗真菌剤)では粒子径を小さくすることにより血中濃度が高くなり、したがって投与量が少なくて効果のあるものとなる。パルミチン酸クロラムフェニコール(抗生物質)ではα、βの2種の結晶形が存在し、β形はα形より効力が著しく低く、α形のみからなる製剤がよいとされている。添加剤では、賦形剤(形を整えるために添加する薬剤)の差による副作用の増大例として、オーストラリアでおきた抗てんかん薬のフェニトインカプセル、イギリスでおきた強心薬のジゴキシン錠の回収事件がある。フェニトインカプセルの例では、無水硫酸カルシウムを賦形剤としていたものを乳糖にかえたことがおもな原因で、ジゴキシン錠では以前用いられていた炭酸カルシウムを乳糖にかえたため副作用が現れている。すなわち、なんら薬効を示さない賦形剤であっても、このものをかえることは、主薬の吸収、分布、代謝、排泄を変え、薬の効果に影響を与えることが明らかとなった。これらの例は、吸収の悪い賦形剤から乳糖にかわり、薬物の吸収がよくなったためにおきたものである。アンプル入りのかぜ薬による死亡事故は、散剤あるいは錠剤であったかぜ薬を水剤としたもので、液剤のほうが固形製剤より吸収がよいことが原因の一つで、剤形の差によっても薬の効果が異なる。

 薬剤の投与ルートは内用、外用、注射の三つに大別される。内用は経口投与による。内用固形製剤として散剤、細粒剤、顆粒(かりゅう)剤、錠剤、カプセル剤、丸剤などがあり、内用液剤には内用水剤、シロップ剤、エリキシル剤、浸煎(しんせん)剤、リモナーデ剤などがある。外用では、固形状の散布剤、外用液剤として注入剤、含嗽(がんそう)剤(うがい薬)、吸入剤、噴霧剤、浣腸(かんちょう)剤、塗布剤、点眼液などの眼用液剤、点耳・点鼻液などの耳鼻用液剤などがあり、外用でもっとも多い剤形として軟膏剤、クリームがあり、さらにパスタ剤、リニメント剤、ローション剤、眼軟膏剤、貼付剤、経皮吸収型製剤、パップ剤、硬膏剤などがある。そのほか、特殊な剤形として坐剤があり、注射剤にはその注入部位により、皮下、皮内、筋肉内、静脈内、動脈内、脊髄腔(せきずいくう)内、関節腔内などと注射方法が分けられている。

[幸保文治]

薬の原料


 薬の原料としては、古くは動物、植物、鉱物そのものか、あるいはそれを加工したものが用いられていた。化学技術の発展は、その有効成分を抽出し、化学構造を決定し、合成することを可能にした。現在では多くの医薬品は化学的な合成によってつくられている。それではその原料は何かを、天然物と化学薬品に分けてみてみよう。

 アスピリンの原料はサリチル酸であり、これはもともと石炭タール中のフェノール、ベンゾールが原料である。そもそも化学工業は、石炭タールからのアニリンを原料にした染色工業をもとに発達したともいえる。最近では石油を原料とした石油化学によることが多い。抗生物質はカビなどの微生物を培養してつくられるが、β-ラクタム系抗生物質ではそのもととなる6-アミノペニシラミン酸、7-アミノセファロスポリン酸をカビにつくらせ、そのあとは合成により新たな薬物をつくりだしている。ビタミン剤もかつては天然物から抽出したが、現在ではほとんどが合成品である。ビタミンCの合成がカビによってなされるというように、発酵工業との関連も多い。ホルモン剤も以前は動物の臓器や尿から抽出されたが、これも合成品が多くなった。天然のホルモン剤はステロイド骨格をもったものかペプチド系のものであり、副腎皮質ホルモンの合成研究が進んだのは、メキシコのサボテンからステロイド骨格をもつ原料が大量に得られるようになってからである。インスリンは、かつてはウシやブタの膵臓(すいぞう)から抽出されたものを使用していたが、遺伝子工学の応用で、微生物を原料にして、いち早くヒトインスリンがつくられ、すべてヒトインスリンにかわった。血栓症の治療に用いられるウロキナーゼは健康人の尿から抽出されているが、これも遺伝子工学により組織培養で製造することができるようになり、市場に出ている。遺伝子組換えにより製造された医薬品にはヒトインスリン、ウロキナーゼのほかB型肝炎ワクチン、ヒト成長ホルモン、ヒトt‐PA、血液凝固第Ⅷ因子、エリスロポエチンなどがあり、大腸菌や酵母類などの微生物や動物の組織などを用いて培養されてつくられる。このように薬の原料は元来は天然品であるが、植物、動物、鉱物、とくに鉱物(石炭、石油)をもとにした化学薬品がその主流を占めているといえよう。

 人の血液を原料とした医薬品に血液製剤がある。ヒトの血液を保存し、緊急時にすぐ輸血が可能となることを考えて人全血液ができたが、さらにこれを有効に使用するため、血液成分を分離して、それぞれ必要な分画成分のみを使用することが可能となった。アルブミン製剤、グロブリン製剤など液体成分のほか、赤血球、白血球、血小板などが濃厚な状態で用いられる(くわしくは血液製剤の項参照)。ヒト以外の血清では免疫血清がある。ジフテリア免疫血清、破傷風免疫血清、ヘビ毒免疫血清などがあり、ワクチンを含めて生物学的製剤という。

[幸保文治]

新薬の開発


 古くは天然物そのものまたは抽出物など加工したものが薬として用いられたが、現在では、薬物の作用機序、化学構造と薬理活性との関係が研究され、それらの結果から、新しい化合物を合成し、作用を調べ、有効な薬が選び出されている。医薬品の開発では、まずその開発目標が設定される。たとえばβ-ラクタム系抗生物質では、骨格となる化学構造は同じで、側鎖といって変化させうる化学構造をいろいろ変えて新しい化合物を合成するといったようなことがその目標の決定である。すなわち、どのような医薬品を開発するかということが初めに決められる。次に、それに相当する薬効をもつ現存する薬物を調べ、どのような系統のものを探すか、合成の手段等を考える。天然物にあってはその有効成分の解明ともっとも有効な抽出方法とともに原料についても検討がなされる。生薬および生薬の製剤がその例である。バイオテクノロジーの発展は、医薬品の製造手段として臓器・組織など生体細胞や微生物の細胞を用いて遺伝子操作により目的の物質を大量につくりだすことを可能にし、さらにヒトゲノムの解読により、病気の原因となる遺伝子を解明し、また医薬品の副作用、個体差の原因となる遺伝子、環境因子を究明することにより、ゲノム創薬、テーラーメイド医療が21世紀の新薬の開発の主流となりつつある。なお、ゲノム創薬とは、病気と関係ある遺伝子やタンパク質を探りあて、そのかかわりを阻害したり、強めたりする新しい薬物をつくりだすことで、テーラーメイド医療とは、遺伝子のタイプや発現パターンにあわせて適切な治療薬や治療法を選択する医療をいう。

 新薬の開発は、一般的には、目標に沿ったいろいろの化合物を合成し、それぞれの効果を生化学的または薬理学的試験法、抗生物質や化学療法剤の場合では微生物学試験法により調べ、効果の有無、大小を測定する。その結果から有効と思われるものを選び出す。これをスクリーニングという。生化学的試験法によるというのは、最近では酵素活性の阻害剤が医薬品として用いられる可能性があり、またそのようなスクリーニングによって有用な薬物がつくられているケースがあるからである。このスクリーニングは各種の方法と何段階かの過程を経る。この段階ではすでに理化学的性状は測定されており、新薬としての可能性が判定されると、次に前臨床試験が行われる。

[幸保文治]

前臨床試験

前臨床試験の内容は、従来使用されている薬物と比較しての薬効薬理試験、一般薬理試験、毒性試験、薬物動態試験からなる。薬効薬理試験と一般薬理試験の違いは、目標とする薬効を調べるのが前者で、そのほか一般的な薬理作用を調べるのが後者である。もっともよいのは、この試験において薬効薬理作用のみ大で一般薬理作用の少ないものであるが、一般的にはこのような薬物はまれである。この一般薬理試験の結果から、目標とした薬理作用以外の作用が発見され、逆にそのほうが主作用として開発されるといったケースもある。しかし普通は、副作用としてのマイナスの面が出てくることが多い。

 また、この間に毒性試験が行われる。毒性、死亡例はもちろん、生き残った動物についてもすべて剖検し、病理組織学的検査が行われる。特殊毒性試験には生殖試験、局所刺激試験、抗原性試験、依存性試験、発癌性試験、変異原性試験がある。生殖試験とは、その薬物が胎児にどのような影響を及ぼすかを調べる試験である。受胎能試験といって受胎に対する影響を調べる試験と、催奇形試験といって形態異常をおこす性質があるか否かその可能性の有無を調べる試験、妊娠末期あるいは授乳期中の母動物に薬を投与したときの子の発育に及ぼす影響を調べる周産期・授乳期試験がある。局所刺激試験は注射剤、点眼剤、軟膏剤、坐薬など局所投与時の粘膜組織への刺激性を調べる試験で、パッチテスト、点眼、皮内注射といった方法が用いられる。抗原性試験はアレルギー反応をおこす可能性の有無を調べる。依存性試験は主として中枢神経抑制剤や興奮剤に対して行われる。発癌性は医薬品としてあってはならない。変異原性とは薬物によって突然変異が誘導されることをいい、この変異原性と発癌性とは密接な関係があるとされる。発癌性試験は長い期間と多くの動物を必要とし、判定もむずかしいところから、微生物を用いる変異原性試験が発癌性の可能性との関連において行われている。

 ついで薬物動態試験が行われる。これはまず動物について主としてラジオ・アイソトープを用いて、吸収、分布、代謝、排泄を検討する。そして代謝産物の同定も行う。

 一方、医薬品として投与するための製剤化の研究を行い、安定性、配合変化などが調べられ、剤形の決定、試験法、試験規格がつくられる。そしてさらに進むと工業的生産についての検討が行われる。

[幸保文治]

臨床試験

前臨床試験で可となると、臨床試験に入る。臨床試験は4段階に分かれる。第1相では少数の健康な成人に薬物を投与して安全性が確認され、第2相では少数の患者について有効性が検討される。この際に投与法、投与量などが決められる。第2相で安全性が確認されると第3相に移る。これは多数の患者を対象として有効性と安全性が調べられ、このときに現存の有効薬物との比較においてプラシーボ(にせ薬)を用いた二重盲検試験が行われ、その薬物の評価が決まる。これらの結果をまとめて厚生労働省へ製造承認手続が行われる。第4相は製造発売許可を得た医薬品についての販売後の安全性のチェックであり、副作用報告が義務づけられており、症例報告が行われている。第1相より第3相までの臨床試験は、GCP(医薬品の臨床試験の実施の基準)にのっとり、第4相はGPMSP(医薬品の市販後調査の基準)にのっとって行わねばならない。これらは、薬事法に基づき厚生労働省令として定められている。

[幸保文治]

新薬開発の方向と展望

ヒトゲノム解読完了の報告は、病気に関係あるヒトゲノム情報とそれに基づく治療薬の開発が現実化することを意味している。ヒトゲノム解析技術を駆使して、医薬品化の可能性のある情報を求め、コンピュータによるドラッグデザインや新しい化学物質合成法であるコンビナトリアルケミストリーなど、新技術による創薬が実現可能となった。こうした状況にあわせて2007年1月、厚生労働省、文部科学省、経済産業省の3省は、3省の大臣などと製薬産業のトップなどをメンバーとする「革新的創薬のための官民対話」を発足させ、「革新的医薬品・医療機器創出のための5ヶ年戦略」を策定した。その内容には、「臨床研究・治験環境の整備」「審査の迅速化・質の向上」などが含まれている。

 新薬開発の方向、それは現在使用されている医薬品の効力の増強、副作用の軽減、さらにまったく新しい理論による創薬、現在治療薬のない難病の治療薬の開発が考えられる。新薬開発の目標となる薬効群には、糖尿病および糖尿病合併症治療薬、制癌剤、排尿障害治療薬、抗高血圧剤、血小板凝集阻害薬、抗リウマチ薬、統合失調症・躁うつ病・認知症・アルツハイマー病治療薬など抗精神病薬、抗脂血症剤、抗アレルギー薬、抗ウイルス薬、抗菌剤、肥満治療薬、オーファンドラッグなどがあげられる。そして目がはなせないのが分子標的薬で、癌、関節リウマチのほか、眼の疾患である加齢黄斑変性の治療薬としても期待されている。今後、効果と副作用が解明されつつ、重要な分野となっていくであろう。

[幸保文治]

薬の安全性基準


 サリドマイド事件等の薬害発生以来、世界的に薬の安全性についての見直しと基準設置が行われている。日本では、医薬品の品質に起因する被害から患者を安全に守るため、「医薬品の製造管理及び品質管理規則」GMP(good manufacturing practice)が定められ、この規則にのっとった製薬工場での製品の品質保証がなされている。GMPは昭和40年代の終わりに厚生省(現厚生労働省)通知で定められ、1980年(昭和55)薬事法の改正により正式の規則となり、1994年(平成6)改訂された。また、1975年から医薬品の流通過程における品質確保、ユーザーに対する情報をも含めて「医薬品の供給と品質管理に関する実践規範」GSP(good supplying practice)が医薬品卸業界で自主的に実施されている。さらに医薬品の開発時における動物実験について、その信頼性を高めるための基準として「医薬品の安全性試験の実施に関する基準について」という通知が厚生省から出され、1982年に実施された。これは「適正動物試験実施規範」GLP(good laboratories practice)というべきものである。ついで、「医薬品の臨床試験の実施の基準」GCP(good clinical practice)が法制化され(平成9年3月改訂)、さらに市販後の医薬品の安全確保のための「医薬品の市販後調査の基準」GPMSP(good post marketing surveillace practice)が、1997年(平成9)3月に厚生省令として出され、医薬品の開発から製造、販売、使用について、有効性、安全性確保のための施策がなされた。さらに、2000年12月にはその一部が改定され、市販直後調査が新設された。新医薬品の重篤な副作用は、通常発売直後にみられるからで、発売開始後6か月間の調査報告が義務づけられている。

[幸保文治]

薬の取扱い方


 薬は両刃(もろは)の剣であり、作用の強いものは副作用も強いと考えられる。したがって薬は正しく使用することが必要であり、医薬品の安全性と有効性が大きな問題となっているゆえんである。正しく使用するというのは、用量と用法、すなわち適切な投与量と投与間隔、投与方法を用いるということである。

 薬を用いる場合にもっとも多い投与経路としては内用があげられる。錠剤、カプセル剤では一般的にそのまま微温湯(ぬるまゆ)または水といっしょに飲み込むが、とくにカプセル剤では大量の水といっしょに飲むことがたいせつである。胃薬はかみ砕いて服用してもよい。粉薬が飲みにくい場合はオブラートにくるんで水とともに飲み込めばよい。飲み込んではいけない錠剤に舌下錠とバッカル錠、トローチがある。舌下錠とバッカル錠は奥歯と頬(ほお)の間か舌の下に入れてそのままにしておく。トローチはドロップのようにしゃぶって溶かす。水剤、シロップ剤は冷蔵庫に入れて保存する。シロップ剤は幼児が好んで飲むよう着色してあり甘味があるので、誤って大量に服用することがないよう、子供の手の届かないところに置くとか、子供では開けられないキャップをしたものを使用することがだいじである。服用時間については、食前、食間、食後あるいは食直後といったように1日3回服用することが多いが、利尿剤のように朝と午後2時というように1日2回でしかも夕方の服用を避けるものや、持効性のあるものは朝夕2回食後に服用するものもあり、さらに1日1回朝だけ服用するといったケースも血圧降下薬などでは多くなった。一般的に、たくさん飲むからよく効く、何回も飲むからよく効くということはなく、むしろ副作用が強く現れるので、決められた量を決められた時間に服用することがたいせつである。

 外用では、皮膚疾患における軟膏(なんこう)、クリーム、外用液剤、すなわち塗布する薬が主であるが、最近では坐薬(ざやく)がよく用いられる。また、咳(せき)止めには噴霧剤がよく使用され、簡単な噴霧器も専用につくられている。軟膏、クリームでは基剤の影響で、症状がかえって悪化することがあるので注意を要する。坐薬は冷蔵庫で保管し、使用時には手をきれいに洗って坐薬を包装から取り出し、肛門(こうもん)に挿入する。小児用の解熱剤としての坐薬はとくに有効であり、今後繁用されるものと考えられる。喘息(ぜんそく)の薬として噴霧剤がよく用いられ効果をあげているが、あまり噴霧の回数を多くすると副作用が現れるので注意が必要である。点眼剤では微生物に汚染され、かえって目の感染症を招くことがあるので、容器を目につけないよう目から離して点眼する。保存の際はかならず冷蔵庫に入れて密栓しておくことがだいじである。白癬(はくせん)など皮膚感染症に対する外用液剤の塗布についても同様の注意が必要である。

 注射剤については、インスリン製剤、ヒト成長ホルモン剤、遺伝子組換え活性型血液凝固第Ⅶ因子製剤、遺伝子組換え型血液凝固第Ⅷ因子製剤、乾燥人血液凝固第Ⅷ因子製剤、乾燥人血液凝固第Ⅸ因子製剤(活性化プロトロンビン複合体および乾燥人血液凝固因子抗体迂回活性複合体を含む)、性腺刺激ホルモン放出ホルモン剤、性腺刺激ホルモン製剤、ゴナドトロピン放出ホルモン誘導体、ソマトスタチンアナログ、インターフェロンα製剤、インターフェロンβ製剤、ブトルファノール製剤、ブプレノルフィン製剤、抗悪性腫瘍剤、グルカゴン製剤、ヒトソマトメジンC製剤、エタネルセプト製剤、ペグビソマント製剤、スマトリプタン製剤、グリチルリチン酸モノアンモニウム・グリシン・L-システイン塩酸塩配合剤が社会保険診療報酬(2008年4月時点)で自己注射が認められているが、患者自身が行う注射で、その取扱い、保管等に十分注意すべきである。とくによく消毒して用いないと感染症がおこる可能性がある。

[幸保文治]

小児・老人・妊婦と薬

薬の作用は年齢、性別によって異なる。小児の場合には、年齢や体重、体表面積から計算された小児薬用量がある。老人の場合は個体差が大きく、一概には決められないが、一般的に量を減らす。妊婦については、とくに妊娠の初期と後期に気をつける必要がある。妊娠の初期3か月までは薬物の服用により胎児に影響を与える可能性が大きく、催奇形性のある薬剤は服用してはならない。分娩(ぶんべん)前では流産のおそれがある。したがって、妊婦の薬剤の服用には専門家の指導を必要とすることを忘れてはならない。

 また、高齢化社会の今日、嚥下(えんげ)や手指・視覚機能の低下がみられる高齢者向けの、取り扱いやすくかつ飲みやすい剤形が開発された。速溶性製剤といい、口に入れたらすぐに崩壊または溶けて楽にのみこめるもので、まったく水なしかまたは少量の水で服用できる。そのほかお菓子のグミ(ゼラチン状の菓子)やゼリーに薬物を入れたものや、新しい賦形薬(形を整えるために添加する薬剤)などが研究されている。

[幸保文治]

『岡崎寛蔵著『くすりの歴史』(1976・講談社)』『石坂哲夫著『くすりの歴史』(1979・日本評論社)』『幸保文治著『薬理学入門』(1984・医学通信社)』『高久文麿ほか監『治療薬マニュアル2001』(2001・医学書院)』『じほう編『薬事ハンドブック』(各年版)』

出典 小学館 日本大百科全書(ニッポニカ)日本大百科全書(ニッポニカ)について 情報 | 凡例

改訂新版 世界大百科事典 「薬」の意味・わかりやすい解説

薬 (くすり)
drugs

一般にわれわれが〈くすり〉という言葉を口にしたり耳にしたりした場合,まず頭に思い浮かべるものは医薬品であろう。しかし,〈薬〉と同義である〈薬品〉という文字をみた場合,もちろん〈医薬品〉は頭に浮かぶが,それと同時に〈化学薬品〉を思い浮かべる。

 化学薬品は,酸類,塩基類をはじめとする基礎化学工業製品,石炭タール成分,石油成分,あるいはそれらの分解産物,重合体など近代化学工業製品群を含んでおり,現代文明を支える化学工業製品の原料から最終製品にいたるさまざまなものが含まれている。これら化学薬品のうち,その生物活性の面で人間の疾病の治療や予防に用いられるものが医薬品=くすりであり,農業生産を阻害する害虫や微生物や雑草の激増を阻止するものが農薬である。そのほかにも臨床検査に使用される試薬類,化学薬品の定性試験や定量試験に用いられる試薬類も化学薬品の一つである。

 一方,医薬品という点からみれば,上記のような化学薬品のほかに,動植物など天然産のものをそのまま,あるいは若干加工して用いる生薬が含まれる。また西洋医学で用いられる種々の医薬品のほかに,東洋医学で用いられてきた漢方薬がある。これは成分や作用機序について必ずしもすべてにわたって明確になっているわけではないが,現代の薬学ではその有効性が公認されている。このほか,民間伝承的に用いられているものに民間薬がある。ときとして,この民間薬も日本では漢方薬に含められることがあるが,その理論の成立ちや歴史性からみると,別ものとして扱われるべきものである。
医薬品 →漢方薬 →生薬 →民間薬
執筆者:

薬とは何か。その答えは文化によって異なる。通文化的には薬とは病気を治療するために内用・外用される物質と定義してもよいが,むしろ,人間のさまざまの不安や欲求をみずからが解決するのではなく,外部的に解決するために用いられる物質と考えたほうが,より一般的であろう。たとえば,旅行者の無事を守るための薬や,好きな相手をほれさせる薬,逆に嫌いな相手を殺す薬,不老長寿や精力増強の薬など,多くの例が列挙される。日本人も例外でなく,病気治療のみを目的とした薬以外の多くの薬の存在を身近に知っている。

 このようなさまざまの薬の出現はとりもなおさず,各文化における病気や悩みに対する考え方の違いにもとづいている。現代西洋医学によって用いられる薬は生理学や生化学などの基礎学問をもとにして発達したものであり,漢方薬は陰陽五行説を背景にもっている。インド薬物はトリ・ドーシャ説が基本であり,アラビア薬物は4体液説をもとにしているといったごとくである。いわゆる未開社会においても,このように整理された形ではないにしても,薬の使用にはそれなりの論理がある。たとえば,南アメリカのアンデス高原ではひじょうに広い範囲にわたって寒-熱の二元論がみられる。病気,身体の状態,季節,天候,食物,薬物などすべてがこの二つに分けられ,そのうえで治療がほどこされる。また,インドネシアのスマトラ島のバタク族では,病気は悪霊によるもの,人間の悪意によるもの,自然現象によって起こるものに分けられ,それぞれに特徴ある治療法が用いられる。このように,薬や治療法には病気に対する考え方の違いが顕著に反映されている。

 人類は植物や動物などの自然の恵みを利用して生きのびてきたが,基本的な物質である食用植物や食用動物に比べると,薬用として開発した種類の豊かさには目をみはるものがある。それは,食用とは異なり薬用ではその用途が多様で,また量的には少量でよいことも原因となっていると思われるが,一方で,人類が薬物の開発にいかに多くのエネルギーを費やしたかを物語るものであろう。
執筆者:

薬に関する伝説や神話は,薬の見いだされてきた過程が,それぞれの民族や部族の食生活を中心とする生活の中から芽生えたことを示している。こうした生活経験の集積から,生理作用に影響を与えるいろいろの薬物が発見され,やがてそれらは,ナイル川やティグリス・ユーフラテス川流域にエジプト,バビロニアなどの古代国家ができたころから,記録にとどめられるようになったが,その代表的なものが前1550年ころに編纂されたといわれる医学全書《エーベルス・パピルス》である。これには700種の治療剤が含まれているといわれている。中国でも後漢期(1~2世紀ころ)に編纂されたといわれている《神農本草》には,365種の薬物が記載されているが,それらの大部分は紀元前の中国大陸の各地で実際に治療に用いられていたものであると考えられている。

 古くからの薬物についての知識は,人間の体や病気についての知識とともに,ギリシア時代に整理され,医学として一つの体系にまとめられた(前5~前3世紀)が,ギリシア医学では薬は自然治癒力を助け,それを妨げるものを除く目的で使用された(薬の種類としてはむしろ合理的な整理が行われ,260種程度に制限されていた)。ギリシア時代につづくローマ時代には,もちろん自然治癒力により病気は克服されると考えていたのは同じであるが,自然の力が不足し医療の助けを必要とする場合には,より積極的に薬を利用するものとした。そして薬物を人体に取り入れやすい形にすること,すなわち錠剤,軟膏,燻蒸剤等の製剤上のくふうが行われた。ディオスコリデスの《薬物誌》はこの時代の高い薬学の水準を示すものといえよう。ローマ帝国の衰亡とともに,ギリシア・ローマの医学は西方世界では衰退期を迎え,修道院でかろうじて温存・継承されたにとどまった。むしろ注目すべきは,このような古代の知的遺産がネストリウス派や単性論派のキリスト教徒などによってアラブ世界に伝えられたことで,これが,8世紀以降におけるアラビア医学の隆盛の基礎をつくった。そして,この時代のアラブ世界の盛んな東西交流を背景に,薬の種類は大いに増大し,8世紀には薬局の前身がバグダードに設けられたという。これは後世のヨーロッパの薬局の原形となったといわれている。しかし,この時代の特色として忘れてならないことは錬金術の発展である。これについても,アラブ世界の貢献は大きい。とりわけ12世紀以降,錬金術文書のみならず多くの古代の文献がアラブ世界を介して西欧にも知られるようになったからである。〈賢者の石〉や〈不老長寿の薬〉をつくろうとした目的は,それ自体は荒唐無稽なことであったが,この目的のためにさまざまな実験が繰り返され,その間に結晶,燃焼,昇華,蒸留,溶解などの現象や,それにともなう技術がつぎつぎに生み出された。

 中世に蓄積された医学・薬学の知識と技術はルネサンス期を迎えていっそう充実し,イアトロケミー(化学的医学)として開花した。とくにパラケルススのような革新的な医学者の活躍によって,水銀,アンチモン,鉛,鉄,銅,ヒ素,硫黄などを用いた無機薬品が薬として登場する一方,各種薬草(生薬)類を原料としたエキス剤やチンキ剤が創製された。この〈薬効があり〉,かつ植物分類学上の位置が確定した植物を対象とした各種のエキス剤は〈薬の精〉として活用され,さらには,有効な生物活性の本体がエキスから単離されるようになった。18世紀から19世紀にかけて,アヘンアルカロイドのモルヒネが単離されたのをはじめ,キニーネ,エメチンなどのアルカロイド類が単離された。近代化学,ことに近代有機化学の発祥をこの時代に求める化学史家は多い。19世紀中葉に,A.ウェーラーによって無機化合物アンモニアと炭酸ガスから尿素(有機化合物)が合成されたのを契機に,あらゆる有機化合物もフラスコ内で合成可能な対象と考えられるようになった。これが近代有機合成化学の発祥であり,現代のおびただしい医薬品,農薬,化学工業製品の時代もこれから始まったということができよう。
執筆者:

民間薬は一般的にはある病気にそれが効ありと伝承されるが,その成分や効果が合理的証明を受けていない種類のものである。この種の薬品には草木虫魚あるいは鉱物などさまざまなものがあり,呪物として精神的安定を与える品物も含まれる。これらの薬は医術と結びついて使用され,その歴史は医術の発達とともに古い。したがって,古代に呪物的に使用された象牙や人骨が現代は精製されたカルシウムの形で用いられるといった場合が少なくない。また古代の治療者は呪術者や宗教者と未分化であったから,そのなごりとして社寺が薬を分与する場合がまれでない。大和吉野の大峰から出る〈陀羅尼助(だらにすけ)〉や木曾御岳の〈御百草〉などはその一例である。これらの需要が増加して販売が社寺の手をはなれ,旅の宗教者や行商の手にうつると薬の行商人が成立し,それが定着すると各地にそうした特産地が発生する。対馬,高取,富山などの売薬のうちには,明確ではないがこのような発生のものがあるかと考えられる。さらに単独の宗教者や医師が土着して,効ある家伝薬をひろめた場合も全国的にあり,〈河童相伝の打身・金瘡薬〉などと称したものには,これを河童を助けた礼として伝えられたなどの伝承をもつ旧家も少なくない。有名な事例に愛州家の秘薬がある。修験道の修行者も山中の薬草や鳥獣を捕獲してその身体の一部を利用して薬とする知識を身につけていた。その後身としての狩猟者の一部は,熊の胆,狐の肝,猿の脳その他の黒焼きや膏薬などを製して山村など無医地帯を巡って頒布した。これらも一種の民間薬であって,九州の五家荘や秋田の阿仁(あに)などはこれが薬行商化した事例といえよう。これら民間薬行商の最盛期は第1次世界大戦中であって,以後は政府の薬事行政の整備にともなって衰微していった。しかし,日本人の日常生活における薬に対する意識はきわめて信仰的で,民間薬に対する信頼があつい。それらのうちには,コイやスッポンの生血のような生命を支持するものが,そのまま病人の生命をも維持回復させるという類感呪術に近い発想もみられるが,近世までのタンパク質や脂肪の不足が単なる肉食によって健康を回復し,元気をとりもどすといった栄養上の効果をもたらした可能性も否定しえない。すなわち,民間薬においては薬効の中に治病と栄養とが未分化にとらえられてきたとみることができよう。
薬売 →生薬
執筆者:

出典 株式会社平凡社「改訂新版 世界大百科事典」改訂新版 世界大百科事典について 情報

ブリタニカ国際大百科事典 小項目事典 「薬」の意味・わかりやすい解説


くすり
drugs

生物の機能に作用する化学物質。一般に病気の治療,診断,予防に用いられる薬剤をさす。薬事法では医薬品として定義され,厚生労働省によって承認申請や取扱いが規制されている。
歴史的にみて薬に関する最古の記述は,紀元前 5000年頃のメソポタミアの粘土板に刻まれたものである。これらの知識はエジプトに伝えられ,紀元前 1550年頃のエベルス・パピルスにまとめられた。その後薬学の知識は古代ギリシアからローマ,そしてアラビアへ伝えられ,8世紀以降にはアラビア医学の隆盛をみるようになった。東洋では約 5000年前の中国の神農が薬の専門家であると伝えられている。その後漢代に,現存する最古の中国の薬物書『神農本草経』が編集されたとされ,これが朝鮮半島を経て日本へ伝わり,今日の漢方のもとになった。一方,日本では『日本書紀』や『古事記』に出てくるオオクニヌシノカミスクナヒコナノミコトが薬祖神とされる。日本語の「くすり」は「苦去り」から生れ,漢字の「薬」は「病をなおす草」という意味からできたといわれる。いわゆる生薬や民間薬がこの系統に属する。このように,薬は歴史的には植物のなかから経験によって選ばれたものが多く,その有効成分を抽出したり,あるいはその薬治効果と類似の効果を与える物質を合成したりするようになった。薬剤研究が飛躍的な発展をとげたのは,1928年にイギリスの細菌学者 A.フレミングによって最初の抗生物質であるペニシリンが発見されてからである。今日の薬剤はほとんどが化学的に合成されたものであるが,植物や動物,鉱物,微生物から作られた多種多様な薬剤も同じように重要である。また遺伝子工学の発達によって,新しい素材も提供されつつある。
薬の分類方法はさまざまである。医薬品の薬効別分類によれば,中枢神経系用,末梢神経系用,消化器系用,循環器系用,麻薬,抗生物質製剤,化学療法剤,生物学的製剤,ホルモン剤など約 40に分けられる。このなかには診断薬や防腐剤,漢方,動物用医薬も含まれている。特定の目的に使われる調合剤には,緩下剤,心刺激薬,抗血液凝固剤,利尿剤,抗ヒスタミン剤などがある。抗生物質は細菌性の感染症にはよく効くが,ウイルス性の疾患には効果がない。これは感染した細胞を傷つけずにウイルスの核酸や酵素だけを破壊する化学物質をみつけるのが難しいためである。このため生物学的製剤であるワクチンを用いた予防接種が行われる。ワクチンは疾病の原因となる病原菌を弱めたり不活性化したもので,狭義には薬とはいえないが,これを体内に注射することで人工的に免疫をつくり出し感染を予防することができる。
薬が生物に作用する経過は一般に以下の通りである。生物はさまざまな化学反応のシステムによって細胞機能を調節している。薬が体内に吸収され血流にのって全身をまわる間に,ちょうど鍵と鍵穴のように,薬のもつ特定の分子構造が生物の細胞膜上にある特定のレセプターに結びつくと,ある反応が阻害される。薬とレセプターの複合体が細胞内に特定の生化学的作用をもたらすきっかけを引起し,生物の機能に作用するわけである。このとき,レセプターに結びついて活発に生化学的変化をもたらす薬を作用剤といい,作用剤と競合するが作用をもたらさない薬は拮抗剤 (遮断剤) と呼ばれる。どちらの場合も結びつくレセプターがなければ,作用を及ぼすことはない。薬のなかには制酸剤のようにレセプターを介さずに作用するものもある。これらは化学的な中和作用や浸透圧などの物理的作用によって薬効を発揮する。
薬の効果は,投与方法によっても左右される。経口投与,すなわち内服では一般に薬効の発現はやや遅いが効果は持続しやすい。この場合,薬は胃で消化され,小腸で吸収されて血流を介して体内を巡る。そして門脈から肝臓に入って代謝・排泄される。このため消化されると薬効を失うものや,薬効の発現を速やかにしたい場合は,消化器官を通さない直接注射による投与,坐薬など直腸からの投与,経皮吸収を期待する貼付剤,口腔粘膜から吸収される舌下錠が選択される。注射や直腸投与は薬効の発現が速やかであるが,持続時間は短くなる。現在は,こうした薬剤の体内への輸送システムの研究が進んでおり,薬剤の形状や投与方法,投与の場所や投与時期を工夫することで,より確実に薬効を得られるようになっている。
癌治療に使われる薬剤,すなわち抗癌剤は薬剤研究の最先端にある。癌細胞を破壊するために開発された抗癌剤は,正常細胞にも影響を与えてしまい,貧血や白血球減少などの重篤な副作用を引起す。このため,白血球の増加を促す薬剤を同時に投与するのはもちろん,癌細胞の分裂サイクルを研究し,作用メカニズムの異なる何種類かの抗癌剤を同時に投与する多剤併用が行われている。また癌細胞だけに結びつく特異抗原をつくり出して集中的に癌細胞を攻撃する抗癌剤も研究されている。このように強力な新薬の登場は治療を格段に進歩させたが,一方で耐性菌の増加,鎭痛剤や向精神薬の習慣性と中毒患者の出現,さらに臨床使用におけるステロイド習慣性のような問題も提起されるようになった。

出典 ブリタニカ国際大百科事典 小項目事典ブリタニカ国際大百科事典 小項目事典について 情報

世界大百科事典(旧版)内のの言及

【医薬品】より

…医療の用に供される薬品を医薬品とよぶ。一般に医薬品とはどのような性格をそなえているかをまず考えてみることにする。…

【生薬】より

…植物,動物および鉱物の天産物をそのままか,またはその一部,あるいは動植物のエキス,分泌物,細胞内含有物を乾燥など簡単に加工を施し,薬用に供するものである。しかし,直接医薬品となるものばかりでなく,生薬製剤,成分製剤の原料となるもの,ならびに香辛料,香粧品,工業薬品などの原料をも含む。…

【方剤】より

…中国伝統医学では乾燥などの簡単な処理をしただけの天然薬物(生薬(しようやく))を用いている。生薬は複雑な成分を含んでいるため,配合のしかたによって効力を増したり,なくしたりするし,効果を発揮させたり飲みやすくしたりするために,粉末化したり煎出したりすることも必要である。…

【山】より

…山の木は,その根さえも灯火用などの需要があり,ウルシは,樹液と実との効用から本数を登録される例があり,イボタ蠟など山林の虫類産物も,小物成として徴されもした。古来の有力農民や寺で,家伝薬配布例が多いのは,その山野支配に由来する面をもつが,幕府や諸藩も山地薬草探索に熱心で,採薬者の深山への旅は,本草学を軸とした自然誌理解を進めた。薬としては,熊の胆を筆頭とする山の動物も重要であったが,動物類では,鷹の幼鳥捕獲が,とくに幕府の大きな関心事であった。…

※「薬」について言及している用語解説の一部を掲載しています。

出典|株式会社平凡社「世界大百科事典(旧版)」

今日のキーワード

脂質異常症治療薬

血液中の脂質(トリグリセリド、コレステロールなど)濃度が基準値の範囲内にない状態(脂質異常症)に対し用いられる薬剤。スタチン(HMG-CoA還元酵素阻害薬)、PCSK9阻害薬、MTP阻害薬、レジン(陰...

脂質異常症治療薬の用語解説を読む

コトバンク for iPhone

コトバンク for Android